Min Max Normalization Python and Matlab – Data Mining
By: Prof. Dr. Fazal Rehman | Last updated: March 3, 2022
Min Max Normalization Python and Matlab – Data Mining
Min Max Normalization in Python and Matlab is today topic of discussion in this tutorial. Min-Max normalization is very helpful in data mining, mathematics, and statistics. Hopefully, you will get benefit from this.
Min Max Normalization Equation
Figure: Min Max Normalization Equation
Data Before and After Normalization
Let’s see in the figure, the data before and after min-max normalization.
Min Max Normalization Python Source Code
Lets see the source code of Min Max Normalization in Python.
def __normalize(self , data ) :
# Save the Real shape of the Given Data
shape = data.shape
# Smoothing the Given Data Valuesto 1 dimension
data = np.reshape( data , (-1 , ) )
# Find MinValue and MaxValue
MaxValue = np.max( data )
MinValue = np.min( data )
# Normalized values are store in a newly created array
normalized_values = list()
# Iterate through every value in data
for AttributeValue in the given data:# Normalize
AttributeValue_normalized = (AttributeValue – MinValue ) / ( MaxValue – MinValue )
# Append it in the array
normalized_values.append( AttributeValue_normalized )
# Convert to numpy array
n_array = np.array( normalized_values )
# Reshape the array to its Real shape and return it.
return np.reshape( n_array , shape )
Explanation of the code # Save the Real shape of the Given Data
shape = data.shape
# Smoothing the Given Data Values to 1 dimension
data = np.reshape( data , (-1 , ) )
Some further steps:
We need to Save the Real shape of the data.
We need to smooth the given data.
The data is reshaped to a single-dimension.
# Find MinValue and MaxValue
MaxValue = np.max( data )
MinValue = np.min( data )
Then, we find the MinValue and MaxValue of the data.
normalized_values = list()
# Iterate through every value in data
for AttributeValue in the given data:# Normalize
AttributeValue_normalized = (AttributeValue – MinValue ) / ( MaxValue – MinValue )
# Append it in the array
normalized_values.append( AttributeValue_normalized )
5. After normalization, we can Save it in the normalized_values list.
# Convert to numpy array
n_array = np.array( normalized_values )
# Reshape the array to its Real shape and return it.
return np.reshape( n_array , shape )