Min Max Normalization Python and Matlab – Data Mining

By: Prof. Dr. Fazal Rehman | Last updated: March 3, 2022

Min Max Normalization Python and Matlab – Data Mining

Min Max Normalization in Python and Matlab is today topic of discussion in this tutorial. Min-Max normalization is very helpful in data mining, mathematics, and statistics. Hopefully, you will get benefit from this.

Min Max Normalization Equation

Min Max Normalization Equation Pythone Matlab
Figure: Min Max Normalization Equation

Data Before and After Normalization

Let’s see in the figure, the data before and after min-max normalization. Min Max Normalization Excel File Calculations

Min Max Normalization Python Source Code

Lets see the source code of Min Max Normalization in Python. def __normalize(self , data ) : # Save the Real shape of the Given Data shape = data.shape # Smoothing the  Given Data Valuesto 1 dimension data = np.reshape( data , (-1 , ) ) # Find MinValue and MaxValue MaxValue = np.max( data ) MinValue = np.min( data ) # Normalized values are store in a newly created array normalized_values = list() # Iterate through every value in data for AttributeValue in the given data: # Normalize AttributeValue_normalized = (AttributeValue – MinValue ) / ( MaxValue – MinValue ) # Append it in the array normalized_values.append( AttributeValue_normalized ) # Convert to numpy array n_array = np.array( normalized_values ) # Reshape the array to its Real shape and return it. return np.reshape( n_array , shape ) Explanation of the code     # Save the Real shape of the Given Data shape = data.shape # Smoothing the  Given Data Values to 1 dimension data = np.reshape( data , (-1 , ) ) Some further steps:
  1. We need to Save the Real shape of the data.
  2. We need to smooth the given data.
  3. The data is reshaped to a single-dimension.
# Find MinValue and MaxValue MaxValue = np.max( data ) MinValue = np.min( data )
  1. Then, we find the MinValue and MaxValue of the data.
normalized_values = list() # Iterate through every value in data for AttributeValue in the given data: # Normalize AttributeValue_normalized = (AttributeValue – MinValue ) / ( MaxValue – MinValue ) # Append it in the array normalized_values.append( AttributeValue_normalized ) 5. After normalization, we can Save it in the normalized_values list. # Convert to numpy array n_array = np.array( normalized_values ) # Reshape the array to its Real shape and return it. return np.reshape( n_array , shape )

Leave a Comment

All Copyrights Reserved 2025 Reserved by T4Tutorials