Finite Automata in theory-of-automata.

## Finite Automata Exercise Solution

Here I am showing you a list of some more important Deterministic Finite Automata used in the theory of automata and theory of computation.

- DFA for (a+b)* (a+b)a .
- DFA for (bb)*(aa)* .
- DFA for b+a(a+b)*+a.
- DFA for (a+b)*b+(bb)*a.
- DFA for bb+a(a+b)*+aa.
- DFA for a(a+b)*+bb(a)* .
- DFA for a(a+b)b*+bb(a)*.
- DFA for b(aa)*a+a(bb)*b.
- DFA for a+a(aa+b)*(aa)b.
- DFA for a+a(aa+b)*+(aa)b.
- DFA for (a+b)b(a+b)*+(aa)*b.
- FA for strings starting with a and ending with a.
- FA for the language of all those strings starting with a.
- FA for the language of all those strings containing aa as a substring.
- DFA for the language of all those strings starting and ending with the same letters.
- DFA for the language of all those strings starting and ending with different letters.
- DFA for the language of all those strings having double 0 or double 1.
- DFA for the language of all those strings starting and ending with b.
- DFA for ending with b.
- DFA for the string of even A’s and even b’s.
- DFA for the regular expression of a(a+b)*+(bb)+a(ba)*+aba+bb*(a+b)*.
- RegExp and DFA for strings having triple a’s or triple b’s.
- Finite Automata of all strings divisible by 4
- Finite automata for all strings with at least one a
- Finite automata for all strings with at least two a
- Finite automata for all strings with exactly two b
- Finite automata for at least one a and at least one b
- Finite automata for strings end in a double letter (two a’s or two b’s)
- Finite Automata for All strings containing exactly one a

**More Examples in the next page**