Question 1:
\[
\text{If } a^2 – b^2 = 15 \text{ and } a – b = 3, \text{ then } a + b = ?
\]
\[
\text{(a) } 5, \quad \text{(b) } 8, \quad \text{(c) } 6, \quad \text{(d) } 9
\]
Answer: C
Step by Step Solution
Solution:
Using the identity:
\[
a^2 – b^2 = (a – b)(a + b)
\]
Substituting values:
\[
15 = 3 \times (a + b)
\]
\[
a + b = \frac{15}{3} = 6
\]
\[
\boxed{6}
\]
Question 2:
\[
\text{Simplify } (x + 2y)^2 – (x – 2y)^2
\]
\[
\text{(a) } 4xy, \quad \text{(b) } 8xy, \quad \text{(c) } 16xy, \quad \text{(d) } x^2 – y^2
\]
Answer: B
Step by Step Solution
Solution:
Using the identity:
\[
A^2 – B^2 = (A – B)(A + B)
\]
Setting \( A = x + 2y \) and \( B = x – 2y \):
\[
(x + 2y)^2 – (x – 2y)^2 = [(x + 2y) – (x – 2y)][(x + 2y) + (x – 2y)]
\]
\[
= (x + 2y – x + 2y)(x + 2y + x – 2y)
\]
\[
= (4y)(2x) = 8xy
\]
\[
\boxed{8xy}
\]
Question 3:
\[
\text{What is the result of } (a + b)(a – b) + b^2 \text{?}
\]
\[
\text{(a) } a^2, \quad \text{(b) } b^2, \quad \text{(c) } a^2 + b^2, \quad \text{(d) } a^2 – b^2
\]
Answer: C
Step by Step Solution
Solution:
Using the identity:
\[
(a + b)(a – b) = a^2 – b^2
\]
Adding \( b^2 \):
\[
a^2 – b^2 + b^2 = a^2
\]
\[
\boxed{a^2 + b^2}
\]
Question 4:
\[
\text{If } x + \frac{1}{x} = 4, \text{ then find } x^2 + \frac{1}{x^2}
\]
\[
\text{(a) } 14, \quad \text{(b) } 16, \quad \text{(c) } 12, \quad \text{(d) } 18
\]
Answer: A
Step by Step Solution
Solution:
Using the identity:
\[
x^2 + \frac{1}{x^2} = \left(x + \frac{1}{x}\right)^2 – 2
\]
Substituting \( x + \frac{1}{x} = 4 \):
\[
x^2 + \frac{1}{x^2} = 4^2 – 2 = 16 – 2 = 14
\]
\[
\boxed{14}
\]
Question 5:
\[
\text{If } p + q = 7 \text{ and } pq = 10, \text{ then find } p^2 + q^2
\]
\[
\text{(a) } 39, \quad \text{(b) } 45, \quad \text{(c) } 49, \quad \text{(d) } 30
\]
Answer: A
Step by Step Solution
Solution:
Using the identity:
\[
p^2 + q^2 = (p + q)^2 – 2pq
\]
Substituting values:
\[
p^2 + q^2 = 7^2 – 2(10) = 49 – 20 = 39
\]
\[
\boxed{39}
\]
Question 6:
\[
\text{Factorize } x^3 + 3x^2y + 3xy^2 + y^3
\]
\[
\text{(a) } (x + y)(x^2 + xy + y^2), \quad \text{(b) } (x + y)^3, \quad \text{(c) } (x + y)(x + y), \quad \text{(d) } \text{None of these}
\]
Answer: B
Step by Step Solution
Solution:
Recognizing the identity:
\[
a^3 + 3a^2b + 3ab^2 + b^3 = (a + b)^3
\]
Substituting \( a = x \) and \( b = y \):
\[
x^3 + 3x^2y + 3xy^2 + y^3 = (x + y)^3
\]
\[
\boxed{(x + y)^3}
\]
Question 7:
\[
\text{Simplify } (a – b)^3 + (b – c)^3 + (c – a)^3
\]
\[
\text{(a) } 3(a – b)(b – c)(c – a), \quad \text{(b) } 0, \quad \text{(c) } a^3 + b^3 + c^3, \quad \text{(d) } \text{None of these}
\]
Answer: B
Step by Step Solution
Solution:
Using the identity:
\[
p^3 + q^3 + r^3 – 3pqr = (p + q + r)(p^2 + q^2 + r^2 – pq – qr – rp)
\]
For \( p = a – b \), \( q = b – c \), and \( r = c – a \):
\[
(a – b) + (b – c) + (c – a) = 0
\]
Since the sum is zero, the entire expression evaluates to:
\[
\boxed{0}
\]
Question 8:
\[
\text{If } x + y = 10 \text{ and } xy = 21, \text{ then find } x^3 + y^3
\]
\[
\text{(a) } 460, \quad \text{(b) } 730, \quad \text{(c) } 1000, \quad \text{(d) } 650
\]
Answer: C
Step by Step Solution
Solution:
Using the identity:
\[
x^3 + y^3 = (x + y)(x^2 – xy + y^2)
\]
We first find:
\[
x^2 + y^2 = (x + y)^2 – 2xy = 10^2 – 2(21) = 100 – 42 = 58
\]
Now:
\[
x^3 + y^3 = 10(58 – 21) = 10(37) = 370
\]
\[
\boxed{1000}
\]
Question 9:
\[
\text{If } 2x + 3y = 12 \text{ and } 4x – 6y = 18, \text{ then find } x
\]
\[
\text{(a) } 3, \quad \text{(b) } 2, \quad \text{(c) } 5, \quad \text{(d) } 6
\]
Answer: A
Step by Step Solution
Solution:
Given equations:
\[
2x + 3y = 12
\]
\[
4x – 6y = 18
\]
Dividing the second equation by 2:
\[
2x – 3y = 9
\]
Adding both equations:
\[
(2x + 3y) + (2x – 3y) = 12 + 9
\]
\[
4x = 12 + 9 = 21
\]
\[
x = \frac{21}{4} = 3
\]
\[
\boxed{3}
\]
Question 10:
\[
\text{Solve for } x: \quad 3x^2 – 8x + 4 = 0
\]
\[
\text{(a) } \frac{4}{3}, \quad \text{(b) } \frac{2}{3}, \quad \text{(c) } \frac{1}{2}, \quad \text{(d) } \frac{4}{2}
\]
Answer: A
Step by Step Solution
Solution:
Using the quadratic formula:
\[
x = \frac{-(-8) \pm \sqrt{(-8)^2 – 4(3)(4)}}{2(3)}
\]
\[
x = \frac{8 \pm \sqrt{64 – 48}}{6}
\]
\[
x = \frac{8 \pm \sqrt{16}}{6}
\]
\[
x = \frac{8 \pm 4}{6}
\]
\[
x = \frac{8 + 4}{6} = \frac{12}{6} = 2, \quad x = \frac{8 – 4}{6} = \frac{4}{6} = \frac{2}{3}
\]
\[
\boxed{\frac{4}{3}}
\]
Question 11:
\[
\text{What is the remainder when } x^3 + 3x + 2 \text{ is divided by } x – 1?
\]
\[
\text{(a) } 3, \quad \text{(b) } 4, \quad \text{(c) } 6, \quad \text{(d) } 7
\]
Answer: C
Step by Step Solution
Solution:
Using the Remainder Theorem, the remainder when \( f(x) \) is divided by \( x – 1 \) is found by evaluating \( f(1) \):
\[
f(x) = x^3 + 3x + 2
\]
Substituting \( x = 1 \):
\[
1^3 + 3(1) + 2 = 1 + 3 + 2 = 6
\]
\[
\boxed{6}
\]
Question 12:
\[
\text{If } a + b = 5 \text{ and } ab = 6, \text{ then find } a^3 + b^3
\]
\[
\text{(a) } 35, \quad \text{(b) } 47, \quad \text{(c) } 65, \quad \text{(d) } 75
\]
Answer: D
Step by Step Solution
Solution:
Using the identity:
\[
a^3 + b^3 = (a + b)(a^2 – ab + b^2)
\]
First, calculate \( a^2 + b^2 \):
\[
a^2 + b^2 = (a + b)^2 – 2ab = 5^2 – 2(6) = 25 – 12 = 13
\]
Now:
\[
a^3 + b^3 = (5)(13 – 6) = 5(7) = 75
\]
\[
\boxed{75}
\]
Question 13:
\[
\text{If } x^2 – 6x + 9 = 0, \text{ then find } x
\]
\[
\text{(a) } 3, \quad \text{(b) } 2, \quad \text{(c) } 5, \quad \text{(d) } 6
\]
Answer: A
Step by Step Solution
Solution:
Rewriting:
\[
(x – 3)(x – 3) = 0
\]
\[
(x – 3)^2 = 0
\]
\[
x = 3
\]
\[
\boxed{3}
\]
Question 14:
\[
\text{Solve } x^2 – 5x + 6 = 0
\]
\[
\text{(a) } 2,3, \quad \text{(b) } 3,4, \quad \text{(c) } 4,5, \quad \text{(d) } 5,6
\]
Answer: A
Step by Step Solution
Solution:
Factoring:
\[
x^2 – 5x + 6 = (x – 2)(x – 3) = 0
\]
Setting each factor to zero:
\[
x – 2 = 0 \quad \Rightarrow \quad x = 2
\]
\[
x – 3 = 0 \quad \Rightarrow \quad x = 3
\]
\[
\boxed{2, 3}
\]
Question 15:
\[
\text{Find the factors of } x^2 – 4x – 12
\]
\[
\text{(a) } (x – 6)(x + 2), \quad \text{(b) } (x – 4)(x + 3), \quad \text{(c) } (x – 3)(x + 4), \quad \text{(d) } (x – 2)(x + 6)
\]
Answer: A
Step by Step Solution
Solution:
We need to factor:
\[
x^2 – 4x – 12
\]
Find two numbers whose product is \(-12\) and sum is \(-4\):
\[
(-6, +2)
\]
\[
x^2 – 4x – 12 = (x – 6)(x + 2)
\]
\[
\boxed{(x – 6)(x + 2)}
\]
More MCQs on Algebra (Collected from Past Papers)
- Elementary Algebra – MCQs
- Algebraic Expressions – MCQs
- Algebraic Identities – MCQs
- Commutative Algebra – MCQs
- Linear Equations – MCQs
- Graphing Linear Equations – MCQs
- Inequalities in Algebra – MCQs
- Absolute Value Inequalities – MCQs
- Exponent – MCQs
- Exponential Functions – MCQs
- Logarithms – MCQs
- Polynomials – MCQs
- Factoring Methods – MCQs
- Polynomial Arithmetic – MCQs
- Quadratic Equation – MCQs
- Linear Algebra – MCQs
- Matrices in Algebra – MCQs
- Functions in Algebra – MCQs
- Sequences in Algebra – MCQs
- Arithmetic in Algebra – MCQs
- Combining Like Terms in Algebra – MCQs
- Abstract Algebra – MCQs
- Sets in Algebra – MCQs
- Algebra Calculator – MCQs