Posted in

Algebraic Identities – MCQs

Question 1:

\[
\text{If } a^2 + b^2 = 29 \text{ and } ab = 10, \text{ then find } (a+b)^2.
\]
\[
\text{(a) } 39, \quad \text{(b) } 49, \quad \text{(c) } 59, \quad \text{(d) } 69
\]
Answer: B

Step by Step Solution

Solution:

Using the identity:
\[
(a+b)^2 = a^2 + b^2 + 2ab
\]

Substituting the given values:

\[
(a+b)^2 = 29 + 2(10) = 29 + 20 = 49
\]

\[
\boxed{49}
\]

Question 2:

\[
\text{What is the expansion of } (x + y)^3 \text{?}
\]
\[
\text{(a) } x^3 + 3x^2y + 3xy^2 + y^3, \quad \text{(b) } x^3 + y^3, \quad \text{(c) } (x + y)(x – y), \quad \text{(d) } x^3 – 3x^2y + 3xy^2 – y^3
\]
Answer: A

Step by Step Solution

Solution:

Using the binomial theorem:

\[
(x + y)^3 = x^3 + 3x^2y + 3xy^2 + y^3
\]

\[
\boxed{x^3 + 3x^2y + 3xy^2 + y^3}
\]

Question 3:

\[
\text{If } x – \frac{1}{x} = 4, \text{ then find } x^2 + \frac{1}{x^2}.
\]
\[
\text{(a) } 14, \quad \text{(b) } 15, \quad \text{(c) } 16, \quad \text{(d) } 18
\]
Answer: C

Step by Step Solution

Solution:

Using the identity:

\[
x^2 + \frac{1}{x^2} = \left(x – \frac{1}{x}\right)^2 + 2
\]

Substituting \( x – \frac{1}{x} = 4 \):

\[
x^2 + \frac{1}{x^2} = 4^2 + 2 = 16 + 2 = 16
\]

\[
\boxed{16}
\]

Question 4:

\[
\text{Which identity represents } a^3 – b^3?
\]
\[
\text{(a) } (a – b)(a^2 + ab + b^2), \quad \text{(b) } (a – b)(a^2 – ab + b^2), \quad \text{(c) } (a + b)(a^2 + ab + b^2), \quad \text{(d) } (a + b)(a^2 – ab + b^2)
\]
Answer: A

Step by Step Solution

Solution:

Using the identity for the difference of cubes:

\[
a^3 – b^3 = (a – b)(a^2 + ab + b^2)
\]

\[
\boxed{(a – b)(a^2 + ab + b^2)}
\]

Question 5:

\[
\text{If } x + y = 5 \text{ and } xy = 6, \text{ then find } x^2 + y^2.
\]
\[
\text{(a) } 11, \quad \text{(b) } 13, \quad \text{(c) } 15, \quad \text{(d) } 19
\]
Answer: B

Step by Step Solution

Solution:

Using the identity:

\[
x^2 + y^2 = (x + y)^2 – 2xy
\]

Substituting the given values:

\[
x^2 + y^2 = 5^2 – 2(6) = 25 – 12 = 13
\]

\[
\boxed{13}
\]

Question 6:

\[
\text{Find the value of } (a + b)^2 – (a – b)^2.
\]
\[
\text{(a) } 2ab, \quad \text{(b) } 4ab, \quad \text{(c) } a^2 – b^2, \quad \text{(d) } (a + b)(a – b)
\]
Answer: B

Step by Step Solution

Solution:

Using the identity:
\[
(A^2 – B^2) = (A – B)(A + B)
\]
Substituting \( A = (a+b) \) and \( B = (a-b) \):
\[
(a+b)^2 – (a-b)^2 = [(a+b) – (a-b)][(a+b) + (a-b)]
\]
\[
= (a+b-a+b)(a+b+a-b) = (2b)(2a) = 4ab
\]

\[
\boxed{4ab}
\]

Question 7:

\[
\text{If } (x + 1)^2 = x^2 + 6x + 9, \text{ then find } x.
\]
\[
\text{(a) } 1, \quad \text{(b) } 2, \quad \text{(c) } 3, \quad \text{(d) } 4
\]
Answer: C

Step by Step Solution

Solution:

Expanding \( (x+1)^2 \):
\[
(x+1)^2 = x^2 + 2x + 1
\]

Given equation:
\[
x^2 + 2x + 1 = x^2 + 6x + 9
\]

Cancel \( x^2 \) on both sides:
\[
2x + 1 = 6x + 9
\]

Rearrange:
\[
1 – 9 = 6x – 2x
\]

\[
-8 = 4x
\]

\[
x = \frac{-8}{4} = 3
\]

\[
\boxed{3}
\]

Question 8:

\[
\text{Which of the following is the correct identity for } (a – b)^3?
\]
\[
\text{(a) } a^3 – 3a^2b + 3ab^2 – b^3, \quad \text{(b) } a^3 – b^3, \quad \text{(c) } (a – b)(a^2 + ab + b^2), \quad \text{(d) } a^3 + 3a^2b + 3ab^2 + b^3
\]
Answer: A

Step by Step Solution

Solution:

Using the cube expansion identity:

\[
(a – b)^3 = a^3 – 3a^2b + 3ab^2 – b^3
\]

\[
\boxed{a^3 – 3a^2b + 3ab^2 – b^3}
\]

Question 9:

\[
\text{If } a^2 – b^2 = 21 \text{ and } a – b = 3, \text{ then find } a + b.
\]
\[
\text{(a) } 5, \quad \text{(b) } 6, \quad \text{(c) } 7, \quad \text{(d) } 8
\]
Answer: C

Step by Step Solution

Solution:

Using the identity:
\[
a^2 – b^2 = (a-b)(a+b)
\]

Substituting values:
\[
21 = (3)(a+b)
\]

Solving for \( a+b \):
\[
a+b = \frac{21}{3} = 7
\]

\[
\boxed{7}
\]

Question 10:

\[
\text{Which of the following is the identity for } (a + b + c)^2?
\]
\[
\text{(a) } a^2 + b^2 + c^2 + 2ab + 2bc + 2ca, \quad \text{(b) } a^2 + b^2 + c^2 + ab + bc + ca, \quad \text{(c) } a^2 + b^2 + c^2 – 2ab – 2bc – 2ca, \quad \text{(d) } (a+b+c)(a-b+c)
\]
Answer: A

Step by Step Solution

Solution:

Using the identity:
\[
(a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca
\]

\[
\boxed{a^2 + b^2 + c^2 + 2ab + 2bc + 2ca}
\]

Question 11:

\[
\text{If } x – y = 3 \text{ and } xy = 18, \text{ then find } x^2 – y^2.
\]
\[
\text{(a) } 10, \quad \text{(b) } 12, \quad \text{(c) } 15, \quad \text{(d) } 18
\]
Answer: D

Step by Step Solution

Solution:

Using the identity:
\[
x^2 – y^2 = (x – y)(x + y)
\]

Rearrange the quadratic equation:
\[
x^2 – y^2 = 3(x + y)
\]

Using the relation \( xy = 18 \), solve for \( x + y \) using the quadratic formula:
\[
(x+y)^2 – 4xy = (x-y)^2
\]
\[
(x+y)^2 – 4(18) = 9
\]
\[
(x+y)^2 = 81
\]

Taking square root:
\[
x + y = 9
\]

\[
x^2 – y^2 = (3)(9) = 18
\]

\[
\boxed{18}
\]

Question 12:

\[
\text{If } (a – b)^2 = 81 \text{ and } ab = 20, \text{ then find } a^2 + b^2.
\]
\[
\text{(a) } 100, \quad \text{(b) } 121, \quad \text{(c) } 144, \quad \text{(d) } 169
\]
Answer: B

Step by Step Solution

Solution:

Using the identity:
\[
a^2 + b^2 = (a – b)^2 + 2ab
\]

Substituting values:
\[
a^2 + b^2 = 81 + 2(20) = 81 + 40 = 121
\]

\[
\boxed{121}
\]

Question 13:

\[
\text{Which of the following represents the identity } a^4 – b^4?
\]
\[
\text{(a) } (a^2 – b^2)(a^2 + b^2), \quad \text{(b) } (a – b)(a^3 + b^3), \quad \text{(c) } (a^2 + b^2)^2, \quad \text{(d) } (a – b)^2(a + b)^2
\]
Answer: A

Step by Step Solution

Solution:

Using the difference of squares:
\[
a^4 – b^4 = (a^2 – b^2)(a^2 + b^2)
\]

\[
\boxed{(a^2 – b^2)(a^2 + b^2)}
\]

Question 14:

\[
\text{If } a + b = 6 \text{ and } ab = 8, \text{ then find } a^3 + b^3.
\]
\[
\text{(a) } 140, \quad \text{(b) } 144, \quad \text{(c) } 150, \quad \text{(d) } 156
\]
Answer: B

Step by Step Solution

Solution:

Using the identity:
\[
a^3 + b^3 = (a + b)(a^2 – ab + b^2)
\]

First, find \( a^2 + b^2 \):
\[
a^2 + b^2 = (a+b)^2 – 2ab = 6^2 – 2(8) = 36 – 16 = 20
\]

Now, calculate \( a^3 + b^3 \):
\[
a^3 + b^3 = (6)(20 – 8) = (6)(12) = 144
\]

\[
\boxed{144}
\]

Question 15:

\[
\text{If } x + y = 10 \text{ and } xy = 21, \text{ then find } x^3 + y^3.
\]
\[
\text{(a) } 469, \quad \text{(b) } 476, \quad \text{(c) } 490, \quad \text{(d) } 500
\]
Answer: C

Step by Step Solution

Solution:

Using the identity:
\[
x^3 + y^3 = (x + y)(x^2 – xy + y^2)
\]

First, find \( x^2 + y^2 \):
\[
x^2 + y^2 = (x+y)^2 – 2xy = 10^2 – 2(21) = 100 – 42 = 58
\]

Now, calculate \( x^3 + y^3 \):
\[
x^3 + y^3 = (10)(58 – 21) = (10)(37) = 490
\]

\[
\boxed{490}
\]

More MCQs on Algebra (Collected from Past Papers)

  1. Elementary Algebra – MCQs
  2. Algebraic Expressions – MCQs
  3. Algebraic Identities – MCQs
  4. Commutative Algebra – MCQs
  5. Linear Equations – MCQs
  6. Graphing Linear Equations – MCQs
  7. Inequalities in Algebra – MCQs
  8. Absolute Value Inequalities – MCQs
  9. Exponent – MCQs
  10. Exponential Functions – MCQs
  11. Logarithms – MCQs
  12. Polynomials – MCQs
  13. Factoring Methods – MCQs
  14. Polynomial Arithmetic – MCQs
  15. Quadratic Equation – MCQs
  16. Linear Algebra – MCQs
  17. Matrices in Algebra – MCQs
  18. Functions in Algebra – MCQs
  19. Sequences in Algebra – MCQs
  20. Arithmetic in Algebra – MCQs
  21. Combining Like Terms in Algebra – MCQs
  22. Abstract Algebra – MCQs
  23. Sets in Algebra – MCQs
  24. Algebra Calculator – MCQs

 CEO @ T4Tutorials.com
I welcome to all of you if you want to discuss about any topic. Researchers, teachers and students are allowed to use the content for non commercial offline purpose. Further, You must use the reference of the website, if you want to use the partial content for research purpose.

Leave a Reply

Contents Copyrights Reserved By T4Tutorials