Graphing Linear Equations – MCQs

By: Prof. Dr. Fazal Rehman | Last updated: February 13, 2025

\[ \textbf{Question 1:} \] \[ \text{What is the slope of the line } 2x – 3y = 6? \] \[ \text{(a) } \frac{2}{3}, \quad \text{(b) } -\frac{2}{3}, \quad \text{(c) } \frac{3}{2}, \quad \text{(d) } -\frac{3}{2} \] Answer: B
Step by Step Solution \[ \textbf{Solution:} \] \[ \text{Rearrange the equation into slope-intercept form } y = mx + b. \] \[ 2x – 3y = 6 \] \[ -3y = -2x + 6 \] \[ y = \frac{2}{3}x – 2 \] \[ \text{The slope is } m = \frac{2}{3}. \] \[ \boxed{-\frac{2}{3}} \]
\[ \textbf{Question 2:} \] \[ \text{What is the y-intercept of the line } y = -4x + 7? \] \[ \text{(a) } 7, \quad \text{(b) } -7, \quad \text{(c) } 4, \quad \text{(d) } -4 \] Answer: A
Step by Step Solution \[ \textbf{Solution:} \] \[ \text{The equation is already in slope-intercept form } y = mx + b. \] \[ \text{Here, } b = 7 \text{ represents the y-intercept.} \] \[ \boxed{7} \]
\[ \textbf{Question 3:} \] \[ \text{Which of the following equations represents a horizontal line?} \] \[ \text{(a) } y = 3, \quad \text{(b) } x = 3, \quad \text{(c) } y = 3x, \quad \text{(d) } x + y = 3 \] Answer: A
Step by Step Solution \[ \textbf{Solution:} \] \[ \text{A horizontal line has the form } y = c \text{ where } c \text{ is a constant.} \] \[ \text{Among the options, only } y = 3 \text{ fits this form.} \] \[ \boxed{y = 3} \]
\[ \textbf{Question 4:} \] \[ \text{Which equation represents a line with an undefined slope?} \] \[ \text{(a) } y = 4, \quad \text{(b) } x = -2, \quad \text{(c) } y = 2x + 5, \quad \text{(d) } x + y = 7 \] Answer: B
Step by Step Solution \[ \textbf{Solution:} \] \[ \text{A line with an undefined slope is a vertical line of the form } x = c. \] \[ \text{Among the given choices, only } x = -2 \text{ fits this form.} \] \[ \boxed{x = -2} \]
\[ \textbf{Question 5:} \] \[ \text{If a line passes through the points } (2,3) \text{ and } (4,7), \text{ what is its slope?} \] \[ \text{(a) } 2, \quad \text{(b) } 3, \quad \text{(c) } \frac{5}{2}, \quad \text{(d) } \frac{7}{4} \] Answer: A
Step by Step Solution \[ \textbf{Solution:} \] \[ \text{The slope of a line passing through } (x_1, y_1) \text{ and } (x_2, y_2) \text{ is given by:} \] \[ m = \frac{y_2 – y_1}{x_2 – x_1} \] \[ m = \frac{7 – 3}{4 – 2} = \frac{4}{2} = 2 \] \[ \boxed{2} \]
\[ \textbf{Question 6:} \] \[ \text{Find the equation of a line with slope } m = 5 \text{ and passing through } (1,2). \] \[ \text{(a) } y = 5x – 3, \quad \text{(b) } y = 5x + 3, \quad \text{(c) } y = 5x – 2, \quad \text{(d) } y = 5x + 2 \] Answer: B
Step by Step Solution \[ \textbf{Solution:} \] \[ \text{The equation of a line in point-slope form is: } y – y_1 = m(x – x_1). \] \[ \text{Substituting } (x_1, y_1) = (1,2) \text{ and } m = 5: \] \[ y – 2 = 5(x – 1) \] \[ y – 2 = 5x – 5 \] \[ y = 5x + 3 \] \[ \boxed{y = 5x + 3} \]
\[ \textbf{Question 7:} \] \[ \text{The x-intercept of the line } 3x + 4y = 12 \text{ is:} \] \[ \text{(a) } (6,0), \quad \text{(b) } (3,0), \quad \text{(c) } (2,0), \quad \text{(d) } (4,0) \] Answer: D
Step by Step Solution \[ \textbf{Solution:} \] \[ \text{The x-intercept occurs when } y = 0. \] \[ 3x + 4(0) = 12 \] \[ 3x = 12 \] \[ x = 4 \] \[ \boxed{(4,0)} \]
\[ \textbf{Question 8:} \] \[ \text{A line has equation } y = -\frac{1}{2}x + 4. \text{ What is its slope?} \] \[ \text{(a) } -\frac{1}{2}, \quad \text{(b) } \frac{1}{2}, \quad \text{(c) } -2, \quad \text{(d) } 2 \] Answer: A
Step by Step Solution \[ \textbf{Solution:} \] \[ \text{The equation is in slope-intercept form } y = mx + b. \] \[ \text{The slope is the coefficient of } x, \text{ which is } -\frac{1}{2}. \] \[ \boxed{-\frac{1}{2}} \]
\[ \textbf{Question 9:} \] \[ \text{Find the equation of the line passing through } (2,5) \text{ and } (4,9). \] \[ \text{(a) } y = 2x + 1, \quad \text{(b) } y = 2x + 3, \quad \text{(c) } y = 2x + 5, \quad \text{(d) } y = 2x – 1 \] Answer: B
Step by Step Solution \[ \textbf{Solution:} \] \[ \text{The slope of a line passing through } (x_1, y_1) \text{ and } (x_2, y_2) \text{ is:} \] \[ m = \frac{y_2 – y_1}{x_2 – x_1} = \frac{9 – 5}{4 – 2} = \frac{4}{2} = 2 \] \[ \text{Using point-slope form with } (2,5): \] \[ y – 5 = 2(x – 2) \] \[ y – 5 = 2x – 4 \] \[ y = 2x + 3 \] \[ \boxed{y = 2x + 3} \]
\[ \textbf{Question 10:} \] \[ \text{A line has equation } 5x + 2y = 10. \text{ What is its y-intercept?} \] \[ \text{(a) } -3, \quad \text{(b) } -5, \quad \text{(c) } 3, \quad \text{(d) } 10 \] Answer: D
Step by Step Solution \[ \textbf{Solution:} \] \[ \text{The y-intercept occurs when } x = 0. \] \[ 5(0) + 2y = 10 \] \[ 2y = 10 \] \[ y = \frac{10}{2} = 5 \] \[ \boxed{5} \]
\[\ \textbf{\Large Question 11:}\\ \text{Which equation represents a vertical line?}\\ \text{(a) } x = -3, \quad \text{(b) } y = -3, \quad \text{(c) } y = 2x – 3, \quad \text{(d) } x + y = -3\\ \textbf{Answer: A}\\
Step by Step Solution \textbf{Solution:}\\ A vertical line is defined by an equation of the form \(x = c\), where \(c\) is a constant. Among the given options, \(x = -3\) matches this form.\\ \textbf{Thus, the correct answer is:} \boxed{x = -3}
\] \[\ \textbf{\Large Question 12:}\\ \text{Find the slope of the line passing through } (-1,2) \text{ and } (3,8).\\ \text{(a) } \frac{6}{4}, \quad \text{(b) } \frac{8}{3}, \quad \text{(c) } \frac{3}{8}, \quad \text{(d) } \frac{4}{6}\\ \textbf{Answer: A}\\
Step by Step Solution \textbf{Solution:}\\ The slope formula is: \[ m = \frac{y_2 – y_1}{x_2 – x_1} \] Substituting \((-1,2)\) and \((3,8)\): \[ m = \frac{8 – 2}{3 – (-1)} = \frac{6}{4} \] \textbf{Thus, the correct answer is:} \boxed{\frac{6}{4}}
\] \[\ \textbf{\Large Question 13:}\\ \text{Find the x-intercept of the line } 7x – 4y = 28.\\ \text{(a) } (4,0), \quad \text{(b) } (7,0), \quad \text{(c) } (3,0), \quad \text{(d) } (6,0)\\ \textbf{Answer: B}\\
Step by Step Solution \textbf{Solution:}\\ To find the x-intercept, set \(y = 0\): \[ 7x – 4(0) = 28 \Rightarrow 7x = 28 \Rightarrow x = 4 \] \textbf{Thus, the correct answer is:} \boxed{(4,0)}
\] \[\ \textbf{\Large Question 14:}\\ \text{Which of the following is the equation of a line parallel to } y = 3x – 5?\\ \text{(a) } y = 3x + 2, \quad \text{(b) } y = -3x + 2, \quad \text{(c) } y = \frac{1}{3}x – 2, \quad \text{(d) } y = -\frac{1}{3}x + 2\\ \textbf{Answer: A}\\
Step by Step Solution \textbf{Solution:}\\ Parallel lines have the same slope. The given equation \(y = 3x – 5\) has a slope of \(3\). The only option with the same slope is \(y = 3x + 2\).\\ \textbf{Thus, the correct answer is:} \boxed{y = 3x + 2}
\] \[\ \textbf{\Large Question 15:}\\ \text{Find the equation of the line perpendicular to } y = 2x – 3 \text{ passing through } (4,5).\\ \text{(a) } y = -\frac{1}{2}x + 7, \quad \text{(b) } y = -\frac{1}{2}x + 5, \quad \text{(c) } y = -\frac{1}{2}x + 3, \quad \text{(d) } y = -\frac{1}{2}x + 6\\ \textbf{Answer: A}\\
Step by Step Solution \textbf{Solution:}\\ The perpendicular slope is the negative reciprocal of \(2\), which is \(-\frac{1}{2}\). The equation of the line is: \[ y – 5 = -\frac{1}{2} (x – 4) \] Expanding: \[ y = -\frac{1}{2}x + 2 + 5 \Rightarrow y = -\frac{1}{2}x + 7 \] \textbf{Thus, the correct answer is:} \boxed{y = -\frac{1}{2}x + 7}
\]

Question 11:

\[ \text{Which equation represents a vertical line?} \] \[ \text{(a) } x = -3, \quad \text{(b) } y = -3, \quad \text{(c) } y = 2x – 3, \quad \text{(d) } x + y = -3 \] Answer: A

Question 12:

\[ \text{Find the slope of the line passing through } (-1,2) \text{ and } (3,8). \] \[ \text{(a) } \frac{6}{4}, \quad \text{(b) } \frac{8}{3}, \quad \text{(c) } \frac{3}{8}, \quad \text{(d) } \frac{4}{6} \] Answer: A

Question 13:

\[ \text{Find the x-intercept of the line } 7x – 4y = 28. \] \[ \text{(a) } (4,0), \quad \text{(b) } (7,0), \quad \text{(c) } (3,0), \quad \text{(d) } (6,0) \] Answer: B

Question 14:

\[ \text{Which of the following is the equation of a line parallel to } y = 3x – 5? \] \[ \text{(a) } y = 3x + 2, \quad \text{(b) } y = -3x + 2, \quad \text{(c) } y = \frac{1}{3}x – 2, \quad \text{(d) } y = -\frac{1}{3}x + 2 \] Answer: A

Question 15:

\[ \text{Find the equation of the line perpendicular to } y = 2x – 3 \text{ passing through } (4,5). \] \[ \text{(a) } y = -\frac{1}{2}x + 7, \quad \text{(b) } y = -\frac{1}{2}x + 5, \quad \text{(c) } y = -\frac{1}{2}x + 3, \quad \text{(d) } y = -\frac{1}{2}x + 6 \] Answer: A

More MCQs on Algebra (Collected from Past Papers)

  1. Elementary Algebra – MCQs
  2. Algebraic Expressions – MCQs
  3. Algebraic Identities – MCQs
  4. Commutative Algebra – MCQs
  5. Linear Equations – MCQs
  6. Graphing Linear Equations – MCQs
  7. Inequalities in Algebra – MCQs
  8. Absolute Value Inequalities – MCQs
  9. Exponent – MCQs
  10. Exponential Functions – MCQs
  11. Logarithms – MCQs
  12. Polynomials – MCQs
  13. Factoring Methods – MCQs
  14. Polynomial Arithmetic – MCQs
  15. Quadratic Equation – MCQs
  16. Linear Algebra – MCQs
  17. Matrices in Algebra – MCQs
  18. Functions in Algebra – MCQs
  19. Sequences in Algebra – MCQs
  20. Arithmetic in Algebra – MCQs
  21. Combining Like Terms in Algebra – MCQs
  22. Abstract Algebra – MCQs
  23. Sets in Algebra – MCQs
  24. Algebra Calculator – MCQs

Leave a Comment

All Copyrights Reserved 2025 Reserved by T4Tutorials