dy dx xy 1 2 (Solved)

[latex] \[ \textbf{Solve the differential equation:} \quad \frac{dy}{dx} = 2(xy + 1) \] \[ \textbf{Step 1: Rewrite the equation.} \] \[ \frac{dy}{dx} – 2xy = 2 \] \[ \textbf{Step 2: Identify the type of differential equation.} \] This is a first-order linear differential equation in the form: \[ \frac{dy}{dx} + P(x)y = Q(x) \] where \( P(x) = -2x \) and \( Q(x) = 2 \). \[ \textbf{Step 3: Find the integrating factor (I.F.).} \] \[ \text{I.F.} = e^{\int P(x) \, dx} = e^{\int -2x \, dx} = e^{-x^2} \] \[ \textbf{Step 4: Multiply through by the integrating factor.} \] \[ e^{-x^2} \frac{dy}{dx} – e^{-x^2} 2xy = 2e^{-x^2} \] \[ \textbf{Step 5: Simplify the left-hand side.} \] \[ \frac{d}{dx} \left( e^{-x^2} y \right) = 2e^{-x^2} \] \[ \textbf{Step 6: Integrate both sides.} \] \[ \int \frac{d}{dx} \left( e^{-x^2} y \right) dx = \int 2e^{-x^2} dx \] \[ e^{-x^2} y = \int 2e^{-x^2} dx + C \] \[ \textbf{Step 7: Solve for \( y \).} \] \[ y = e^{x^2} \left( \int 2e^{-x^2} dx + C \right) \] \[ \textbf{Final solution:} \quad y = e^{x^2} \left( \int 2e^{-x^2} dx + C \right) \]
All Copyrights Reserved 2025 Reserved by T4Tutorials