Vector Functions MCQs in Calculus

By: Prof. Dr. Fazal Rehman Shamil | Last updated: February 4, 2025

Question 1:

\[ \text{Which of the following is a vector function?} \] \[ \text{(a) } f(t) = t^2 + 3t, \quad \text{(b) } \mathbf{r}(t) = (t, t^2, t^3), \quad \text{(c) } f(t) = \sin(t), \quad \text{(d) } g(t) = \cos(t) \] Answer: B

Question 2:

\[ \text{If } \mathbf{r}(t) = (t^2, 2t, 3t), \text{ what is } \mathbf{r}'(t)? \] \[ \text{(a) } (2t, 2, 3), \quad \text{(b) } (2t, 2t, 3), \quad \text{(c) } (2, 2, 3), \quad \text{(d) } (t, 2, 3) \] Answer: A

Question 3:

\[ \text{Which of the following is the equation of the tangent vector to the vector function } \mathbf{r}(t) = (t^3, \sin(t), e^t) \text{ at } t = 0? \] \[ \text{(a) } (0, 1, 1), \quad \text{(b) } (0, 0, 1), \quad \text{(c) } (1, 0, 1), \quad \text{(d) } (0, 0, 0) \] Answer: B

Question 4:

\[ \text{If } \mathbf{r}(t) = (t^2, 3t, e^t), \text{ what is the velocity vector } \mathbf{v}(t)? \] \[ \text{(a) } (2t, 3, e^t), \quad \text{(b) } (t, 3, e^t), \quad \text{(c) } (2t, 3t, e^t), \quad \text{(d) } (0, 3, 0) \] Answer: A

Question 5:

\[ \text{For the vector function } \mathbf{r}(t) = (t^2, \cos(t), t), \text{ the acceleration vector is } \mathbf{a}(t) = ? \] \[ \text{(a) } (2, -\sin(t), 0), \quad \text{(b) } (2t, -\sin(t), 1), \quad \text{(c) } (0, -\cos(t), 0), \quad \text{(d) } (2, \sin(t), 0) \] Answer: B

Question 6:

\[ \text{If } \mathbf{r}(t) = (t^2, 2t, t^3), \text{ what is the speed of the curve at } t = 1? \] \[ \text{(a) } \sqrt{14}, \quad \text{(b) } \sqrt{6}, \quad \text{(c) } 6, \quad \text{(d) } 5 \] Answer: A

Question 7:

\[ \text{What is the position vector at } t = 1 \text{ for the vector function } \mathbf{r}(t) = (e^t, \sin(t), t^2)? \] \[ \text{(a) } (e, \sin(1), 1), \quad \text{(b) } (e, \sin(1), 0), \quad \text{(c) } (1, \sin(1), 1), \quad \text{(d) } (1, \sin(1), 0) \] Answer: A

Question 8:

\[ \text{Which of the following is the arc length of the curve defined by the vector function } \mathbf{r}(t) = (t, t^2) \text{ from } t = 0 \text{ to } t = 1? \] \[ \text{(a) } \sqrt{2}, \quad \text{(b) } 2, \quad \text{(c) } \frac{3}{2}, \quad \text{(d) } 1 \] Answer: A

Question 9:

\[ \text{If the vector function } \mathbf{r}(t) = (e^t, \cos(t), t), \text{ what is the derivative of the position vector at } t = 0? \] \[ \text{(a) } (1, -1, 1), \quad \text{(b) } (1, 0, 1), \quad \text{(c) } (1, 1, 1), \quad \text{(d) } (0, -1, 0) \] Answer: B

Question 10:

\[ \text{The vector function } \mathbf{r}(t) = (t, \cos(t), e^t) \text{ describes a curve. What is the direction of motion at } t = 0? \] \[ \text{(a) } (0, 1, 1), \quad \text{(b) } (1, 0, 1), \quad \text{(c) } (0, 0, 1), \quad \text{(d) } (1, -1, 0) \] Answer: C

Question 11:

\[ \text{What is the derivative of the vector function } \mathbf{r}(t) = (3t^2, t^3, \sin(t)) \text{ with respect to } t? \] \[ \text{(a) } (6t, 3t^2, \cos(t)), \quad \text{(b) } (6t^2, 3t^2, \cos(t)), \quad \text{(c) } (6t, 3t^3, \cos(t)), \quad \text{(d) } (3t^2, 3t^3, \cos(t)) \] Answer: A

Question 12:

\[ \text{For the vector function } \mathbf{r}(t) = (2t, 3t^2, t), \text{ what is the velocity vector at } t = 2? \] \[ \text{(a) } (2, 12, 2), \quad \text{(b) } (4, 12, 2), \quad \text{(c) } (6, 6, 2), \quad \text{(d) } (6, 12, 2) \] Answer: B

Question 13:

\[ \text{If the vector function is } \mathbf{r}(t) = (t^2 + 1, \cos(t), e^{-t}), \text{ what is the acceleration vector at } t = 0? \] \[ \text{(a) } (2, -1, -1), \quad \text{(b) } (0, -1, 1), \quad \text{(c) } (2, 1, -1), \quad \text{(d) } (0, 1, -1) \] Answer: A

Question 14:

\[ \text{What is the equation of the velocity vector for the vector function } \mathbf{r}(t) = (e^t, t, \sin(t))? \] \[ \text{(a) } (e^t, 1, \cos(t)), \quad \text{(b) } (e^t, 0, \cos(t)), \quad \text{(c) } (e^t, t, \cos(t)), \quad \text{(d) } (e^t, 1, \sin(t)) \] Answer: A

Question 15:

\[ \text{What is the position vector at } t = \pi \text{ for the vector function } \mathbf{r}(t) = (t, \sin(t), \cos(t))? \] \[ \text{(a) } (\pi, 0, -1), \quad \text{(b) } (\pi, 0, 1), \quad \text{(c) } (\pi, 1, 0), \quad \text{(d) } (\pi, -1, 0) \] Answer: A

More MCQs on Calculus

  1. Functions and Models MCQs in Calculus
  2. Limits and Derivatives MCQs in Calculus
  3. Differentiation Rules MCQs in Calculus
  4. Applications of Differentiation MCQs in Calculus
  5. Integrals MCQs in Calculus
  6. Applications of Integration MCQs in Calculus
  7. Techniques of Integration MCQs in Calculus
  8. Differential Equations MCQs in Calculus
  9. Parametric Equations and Polar Coordinates MCQs in Calculus
  10. Infinite Sequences and Series MCQs in Calculus
  11. Vectors and the Geometry of Space MCQs in Calculus
  12. Vector Functions MCQs in Calculus
  13. Partial Derivatives MCQs in Calculus
  14. Multiple Integrals MCQs in Calculus
  15. Vector Calculus MCQs in Calculus
  16. Second-Order Differential Equations MCQs in Calculus

Leave a Reply