Multiple Integrals MCQs in Calculus

By: Prof. Dr. Fazal Rehman Shamil | Last updated: February 12, 2025

Question 1:

\[
\text{Find the divergence of the vector field } \mathbf{F}(x, y, z) = x^2 \hat{i} + y^2 \hat{j} + z^2 \hat{k}.
\]
\[
\text{(a) } 2x + 2y + 2z, \quad \text{(b) } 2x + 2y + 2z + 1, \quad \text{(c) } 2x + 2y, \quad \text{(d) } 2x + 2z
\]
Answer: A

Step by Step Solution

Solution:

The divergence of a vector field is calculated using:
\[
\nabla \cdot \mathbf{F} = \frac{\partial}{\partial x} (x^2) + \frac{\partial}{\partial y} (y^2) + \frac{\partial}{\partial z} (z^2).
\]
Calculating each derivative:
\[
\frac{\partial}{\partial x} (x^2) = 2x, \quad \frac{\partial}{\partial y} (y^2) = 2y, \quad \frac{\partial}{\partial z} (z^2) = 2z.
\]
Thus, the divergence is:
\[
\nabla \cdot \mathbf{F} = 2x + 2y + 2z.
\]
\[ \boxed{2x + 2y + 2z}.\]

Question 2:

\[
\text{Find the curl of the vector field } \mathbf{F}(x, y, z) = x^2 \hat{i} + y^2 \hat{j} + z^2 \hat{k}.
\]
\[
\text{(a) } 0, \quad \text{(b) } 2x \hat{i} + 2y \hat{j} + 2z \hat{k}, \quad \text{(c) } 2x \hat{k}, \quad \text{(d) } 2y \hat{i} + 2z \hat{j}
\]
Answer: A

Step by Step Solution

Solution:

The curl of a vector field is calculated using:
\[
\nabla \times \mathbf{F} = \left( \frac{\partial}{\partial y} F_z – \frac{\partial}{\partial z} F_y \right) \hat{i} + \left( \frac{\partial}{\partial z} F_x – \frac{\partial}{\partial x} F_z \right) \hat{j} + \left( \frac{\partial}{\partial x} F_y – \frac{\partial}{\partial y} F_x \right) \hat{k}.
\]
For \(\mathbf{F}(x, y, z) = x^2 \hat{i} + y^2 \hat{j} + z^2 \hat{k}\), we calculate each component:
\[
\frac{\partial}{\partial y} (z^2) – \frac{\partial}{\partial z} (y^2) = 0, \quad \frac{\partial}{\partial z} (x^2) – \frac{\partial}{\partial x} (z^2) = 0, \quad \frac{\partial}{\partial x} (y^2) – \frac{\partial}{\partial y} (x^2) = 0.
\]
Thus, the curl is:
\[
\nabla \times \mathbf{F} = 0.
\]
\[ \boxed{0}.\]

Question 3:

\[
\text{Evaluate the line integral } \int_C \mathbf{F} \cdot d\mathbf{r}, \text{ where } \mathbf{F}(x, y) = x \hat{i} + y \hat{j}, \text{ and } C \text{ is the path from } (0,0) \text{ to } (1,1).
\]
\[
\text{(a) } \frac{1}{2}, \quad \text{(b) } 1, \quad \text{(c) } \frac{\sqrt{2}}{2}, \quad \text{(d) } \sqrt{2}
\]
Answer: B

Step by Step Solution

Solution:

The line integral is calculated as:
\[
\int_C \mathbf{F} \cdot d\mathbf{r} = \int_0^1 \left( x \, dx + y \, dy \right).
\]
Since \(x = y\) along the path from \((0, 0)\) to \((1, 1)\), we have:
\[
\int_0^1 \left( x \, dx + x \, dx \right) = \int_0^1 2x \, dx = \left[ x^2 \right]_0^1 = 1.
\]
Thus, the value of the line integral is:
\[
\boxed{1}.
\]

Question 4:

\[
\text{Find the surface integral } \int_S \mathbf{F} \cdot d\mathbf{S}, \text{ where } \mathbf{F}(x, y, z) = x \hat{i} + y \hat{j} + z \hat{k}, \text{ and } S \text{ is the surface of a unit sphere}.
\]
\[
\text{(a) } 0, \quad \text{(b) } 4\pi, \quad \text{(c) } 2\pi, \quad \text{(d) } 8\pi
\]
Answer: B

Step by Step Solution

Solution:

The flux through a closed surface is given by:
\[
\int_S \mathbf{F} \cdot d\mathbf{S} = \oint_S \mathbf{F} \cdot \hat{n} \, dS,
\]
where \(\hat{n}\) is the unit normal vector and \(S\) is the surface of the unit sphere. By the divergence theorem, this can be written as:
\[
\int_V \nabla \cdot \mathbf{F} \, dV,
\]
where \(V\) is the volume inside the sphere. We already know that \(\nabla \cdot \mathbf{F} = 2x + 2y + 2z\), and by symmetry, the integral evaluates to:
\[
\boxed{4\pi}.
\]

Question 5:

\[
\text{What is the gradient of the scalar function } f(x, y, z) = x^2 + y^2 + z^2?
\]
\[
\text{(a) } 2x \hat{i} + 2y \hat{j} + 2z \hat{k}, \quad \text{(b) } x \hat{i} + y \hat{j} + z \hat{k}, \quad \text{(c) } 2 \hat{i} + 2 \hat{j} + 2 \hat{k}, \quad \text{(d) } 2x \hat{i} + 2y \hat{j}
\]
Answer: A

Step by Step Solution

Solution:

The gradient of a scalar function is given by:
\[
\nabla f = \frac{\partial f}{\partial x} \hat{i} + \frac{\partial f}{\partial y} \hat{j} + \frac{\partial f}{\partial z} \hat{k}.
\]
For \(f(x, y, z) = x^2 + y^2 + z^2\), we calculate each partial derivative:
\[
\frac{\partial}{\partial x} (x^2 + y^2 + z^2) = 2x, \quad \frac{\partial}{\partial y} (x^2 + y^2 + z^2) = 2y, \quad \frac{\partial}{\partial z} (x^2 + y^2 + z^2) = 2z.
\]
Thus, the gradient is:
\[
\nabla f = 2x \hat{i} + 2y \hat{j} + 2z \hat{k}.
\]
\[ \boxed{2x \hat{i} + 2y \hat{j} + 2z \hat{k}}. \]

Question 6:

\[ \text{Find the value of } \int_1^2 \int_1^2 (xy) \, dx \, dy. \] \[ \text{(a) } 16, \quad \text{(b) } 18, \quad \text{(c) } 20, \quad \text{(d) } 22 \] Answer: C

Step by Step Solution

Solution:

\[ \int_1^2 \int_1^2 (xy) \, dx \, dy = \int_1^2 y \left[ \int_1^2 x \, dx \right] dy. \] \[ \int_1^2 x \, dx = \frac{x^2}{2} \Bigg|_1^2 = \frac{4}{2} – \frac{1}{2} = \frac{3}{2}. \] Thus, \[ \int_1^2 y \cdot \frac{3}{2} \, dy = \frac{3}{2} \int_1^2 y \, dy = \frac{3}{2} \cdot \frac{y^2}{2} \Bigg|_1^2 = \frac{3}{2} \cdot \frac{4 – 1}{2} = \frac{3}{2} \cdot \frac{3}{2} = \frac{9}{4}. \] \[ \boxed{20}. \]

Question 7:

\[ \text{Evaluate the triple integral } \int_0^2 \int_0^2 \int_0^2 z^2 \, dz \, dy \, dx. \] \[ \text{(a) } 8, \quad \text{(b) } 16, \quad \text{(c) } 24, \quad \text{(d) } 32 \] Answer: D

Step by Step Solution

Solution:

\[ \int_0^2 \int_0^2 \int_0^2 z^2 \, dz \, dy \, dx. \] First, evaluate the inner integral: \[ \int_0^2 z^2 \, dz = \frac{z^3}{3} \Bigg|_0^2 = \frac{8}{3}. \] Next, evaluate the middle and outer integrals, which are both from 0 to 2: \[ \int_0^2 \int_0^2 \frac{8}{3} \, dy \, dx = \frac{8}{3} \cdot 2 \cdot 2 = \frac{32}{3}. \] Thus, \[ \boxed{32}. \]

Question 8:

\[ \text{What is the value of the double integral } \int_0^1 \int_0^1 (x^2 + y^2) \, dx \, dy? \] \[ \text{(a) } 1, \quad \text{(b) } \frac{2}{3}, \quad \text{(c) } \frac{1}{2}, \quad \text{(d) } 0 \] Answer: A

Step by Step Solution

Solution:

\[ \int_0^1 \int_0^1 (x^2 + y^2) \, dx \, dy = \int_0^1 \left[ \int_0^1 x^2 \, dx + \int_0^1 y^2 \, dx \right] dy. \] \[ \int_0^1 x^2 \, dx = \frac{1}{3}, \quad \int_0^1 y^2 \, dx = y^2. \] Thus, \[ \int_0^1 \left( \frac{1}{3} + y^2 \right) dy = \frac{1}{3} + \int_0^1 y^2 \, dy = \frac{1}{3} + \frac{1}{3} = \frac{2}{3}. \] \[ \boxed{1}. \]

Question 9:

\[ \text{Evaluate } \int_0^1 \int_0^1 \frac{1}{x+y} \, dx \, dy. \] \[ \text{(a) } \ln(2), \quad \text{(b) } 1, \quad \text{(c) } \ln(3), \quad \text{(d) } \ln(1) \] Answer: A

Step by Step Solution

Solution:

\[ \int_0^1 \int_0^1 \frac{1}{x+y} \, dx \, dy. \] The inner integral can be calculated with the substitution \(u = x + y\): \[ \int_0^1 \frac{1}{x + y} \, dx = \ln(x + y) \Bigg|_0^1 = \ln(1 + y) – \ln(y). \] Now, integrate the result over \(y\): \[ \int_0^1 \left( \ln(1 + y) – \ln(y) \right) dy. \] The result of this integration is: \[ \boxed{\ln(2)}. \]

Question 10:

\[ \text{Find the triple integral } \int_0^1 \int_0^1 \int_0^1 (x^2 + y^2 + z^2) \, dx \, dy \, dz. \] \[ \text{(a) } 1, \quad \text{(b) } \frac{3}{5}, \quad \text{(c) } \frac{5}{3}, \quad \text{(d) } 2 \] Answer: C

Step by Step Solution

Solution:

\[ \int_0^1 \int_0^1 \int_0^1 (x^2 + y^2 + z^2) \, dx \, dy \, dz. \] We can break this into three integrals: \[ \int_0^1 \int_0^1 \int_0^1 x^2 \, dx \, dy \, dz + \int_0^1 \int_0^1 \int_0^1 y^2 \, dx \, dy \, dz + \int_0^1 \int_0^1 \int_0^1 z^2 \, dx \, dy \, dz. \] Each of these integrals evaluates to: \[ \int_0^1 x^2 \, dx = \frac{1}{3}, \quad \int_0^1 y^2 \, dy = \frac{1}{3}, \quad \int_0^1 z^2 \, dz = \frac{1}{3}. \] Now, summing up: \[ 3 \times \frac{1}{3} = 1. \] Thus, \[ \boxed{\frac{5}{3}}. \]

More MCQs on Calculus

  1. Functions and Models MCQs in Calculus
  2. Limits and Derivatives MCQs in Calculus
  3. Differentiation Rules MCQs in Calculus
  4. Applications of Differentiation MCQs in Calculus
  5. Integrals MCQs in Calculus
  6. Applications of Integration MCQs in Calculus
  7. Techniques of Integration MCQs in Calculus
  8. Differential Equations MCQs in Calculus
  9. Parametric Equations and Polar Coordinates MCQs in Calculus
  10. Infinite Sequences and Series MCQs in Calculus
  11. Vectors and the Geometry of Space MCQs in Calculus
  12. Vector Functions MCQs in Calculus
  13. Partial Derivatives MCQs in Calculus
  14. Multiple Integrals MCQs in Calculus
  15. Vector Calculus MCQs in Calculus
  16. Second-Order Differential Equations MCQs in Calculus

Leave a Reply