Topology MCQs Math

\[ \textbf{MCQs on Topology with Answers} \] \[ \textbf{Q1: Which of the following is a topological space?} \] \[ \text{(A) } \mathbb{R}^2 \quad \text{(B) } \mathbb{N} \quad \text{(C) } \mathbb{Z} \quad \text{(D) } \mathbb{Q} \] \[ \textbf{Answer: (A) } \mathbb{R}^2 \] \[ \textbf{Q2: A subset } A \text{ of a topological space } X \text{ is open if:} \] \[ \text{(A) } A \text{ is the union of open sets} \quad \text{(B) } A \text{ is the intersection of closed sets} \quad \text{(C) } A \text{ is the union of closed sets} \quad \text{(D) } A \text{ contains at least one point} \] \[ \textbf{Answer: (A) } A \text{ is the union of open sets} \] \[ \textbf{Q5: The space } \mathbb{R} \text{ with the standard topology is:} \] \[ \text{(A) } Connected \quad \text{(B) } Disconnected \quad \text{(C) } Neither connected nor disconnected \quad \text{(D) } Isolated \] \[ \textbf{Answer: (A) } Connected \] \[ \textbf{Q6: Which of the following is a basis for the topology on } \mathbb{R} \text{?} \] \[ \text{(A) } \{(a, b) \ | \ a, b \in \mathbb{R} \text{ and } a < b \} \quad \text{(B) } \{(a, b) \ | \ a, b \in \mathbb{R} \text{ and } a > b \} \quad \text{(C) } \{[a, b] \ | \ a, b \in \mathbb{R} \text{ and } a < b \} \quad \text{(D) } \{(a, b) \ | \ a, b \in \mathbb{R} \text{ and } a = b \} \] \[ \textbf{Answer: (A) } \{(a, b) \ | \ a, b \in \mathbb{R} \text{ and } a < b \} \] \[ \textbf{Q7: If a function is continuous on a compact set, then it is:} \] \[ \text{(A) } Always differentiable \quad \text{(B) } Always bounded \quad \text{(C) } Always injective \quad \text{(D) } Always surjective \] \[ \textbf{Answer: (B) } Always bounded \] \[ \textbf{Q9: A topological space is said to be Hausdorff if:} \] \[ \text{(A) } Every pair of distinct points has disjoint open neighborhoods \quad \text{(B) } Every set is open \quad \text{(C) } Every set is closed \quad \text{(D) } Every set has a unique boundary \] \[ \textbf{Answer: (A) } Every pair of distinct points has disjoint open neighborhoods \] \[ \textbf{Q10: The fundamental group of a circle is:} \] \[ \text{(A) } \mathbb{Z} \quad \text{(B) } \mathbb{R} \quad \text{(C) } \mathbb{Z}_2 \quad \text{(D) } The trivial group \] \[ \textbf{Answer: (A) } \mathbb{Z} \]

Leave a Comment

All Copyrights Reserved 2025 Reserved by T4Tutorials