Division of Matrices Exercise

By: Prof. Dr. Fazal Rehman Shamil | Last updated: November 26, 2024

[latex]
\[
\textbf{Exercise on Division of Matrices with Step-by-Step Solutions}
\]

  1. \[
    \textbf{Divide the matrix } A = \begin{pmatrix} 6 & 3 \\ 9 & 12 \end{pmatrix} \textbf{ by the matrix } B = \begin{pmatrix} 3 & 1 \\ 3 & 4 \end{pmatrix}.
    \] Solution
  2. \[
    \textbf{ Divide the Square Matrix A by the Square Matrix B, where:}
    \]
    \[
    A = \begin{pmatrix} 8 & 4 \\ 2 & 6 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}
    \] Solution
  3. \[
    \textbf{Divide the Diagonal Matrix A by the Diagonal Matrix B, where:}
    \]
    \[
    A = \begin{pmatrix} 6 & 0 \\ 0 & 9 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}
    \] Solution
  4. \[
    \textbf{Divide the Scalar Matrix A by the Scalar Matrix B, where:}
    \]
    \[
    A = \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}
    \] Solution
  5. \[
    \textbf{Q4: Divide the Identity Matrix A by the Identity Matrix B, where:}
    \]
    \[
    A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}
    \] Solution
  6. \[
    \textbf{Divide the Zero Matrix A by the Zero Matrix B, where:}
    \]
    \[
    A = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}
    \] Solution
  7. \[
    \textbf{Divide the Symmetric Matrix A by the Skew-Symmetric Matrix B, where:}
    \]
    \[
    A = \begin{pmatrix} 4 & 2 \\ 2 & 4 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}
    \] Solution