[latex]
\[
\textbf{Exercise on Division of Matrices with Step-by-Step Solutions}
\]
- \[
\textbf{Divide the matrix } A = \begin{pmatrix} 6 & 3 \\ 9 & 12 \end{pmatrix} \textbf{ by the matrix } B = \begin{pmatrix} 3 & 1 \\ 3 & 4 \end{pmatrix}.
\] Solution - \[
\textbf{ Divide the Square Matrix A by the Square Matrix B, where:}
\]
\[
A = \begin{pmatrix} 8 & 4 \\ 2 & 6 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}
\] Solution - \[
\textbf{Divide the Diagonal Matrix A by the Diagonal Matrix B, where:}
\]
\[
A = \begin{pmatrix} 6 & 0 \\ 0 & 9 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}
\] Solution - \[
\textbf{Divide the Scalar Matrix A by the Scalar Matrix B, where:}
\]
\[
A = \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}
\] Solution - \[
\textbf{Q4: Divide the Identity Matrix A by the Identity Matrix B, where:}
\]
\[
A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}
\] Solution - \[
\textbf{Divide the Zero Matrix A by the Zero Matrix B, where:}
\]
\[
A = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}
\] Solution - \[
\textbf{Divide the Symmetric Matrix A by the Skew-Symmetric Matrix B, where:}
\]
\[
A = \begin{pmatrix} 4 & 2 \\ 2 & 4 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}
\] Solution