[latex]
\[
\textbf{Divide the Identity Matrix A by the Identity Matrix B, where:}
\]
\[
A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}
\]
\[
\textbf{Solution: The division of identity matrices results in an identity matrix.}
\]
\[
A \div B = \begin{pmatrix} \frac{1}{1} & 0 \\ 0 & \frac{1}{1} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}
\]
\[
\textbf{Answer: } \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}
\]
Related Posts:
- Divide Matrix A = [(6, 3), (9, 12)] by Matrix B = [(3, 1), (3, 4)]
- Divide Matrix A=[(8,4),(2,6)]A=[(8,4),(2,6)] by Matrix B=[(2,1),(1,2)]B=[(2,1),(1,2)].
- Divide the Diagonal Matrix A=[(6,0),(0,9)]A=[(6,0),(0,9)] by the Diagonal Matrix B=[(2,0),(0,3)]B=[(2,0),(0,3)].
- Divide the Scalar Matrix A=[(5,0),(0,5)]A=[(5,0),(0,5)] by the Scalar Matrix B=[(2,0),(0,2)]B=[(2,0),(0,2)].
- Divide the Zero Matrix A=[(0,0),(0,0)]A=[(0,0),(0,0)] by the Zero Matrix B=[(0,0),(0,0)]B=[(0,0),(0,0)].
- Divide the Symmetric Matrix A = [(4, 2), (2, 4)] by the Skew-Symmetric Matrix B = [(0, 1), (-1, 0)].