Determinant of a Triangular Matrix Exercise

\[\] Question #1: \[ \textbf{Calculate the determinant of the following upper triangular matrix:} \] \[ A = \begin{pmatrix} 4 & 3 & 2 \\ 0 & 5 & 1 \\ 0 & 0 & 6 \end{pmatrix} \] Question #2: \[ \textbf{ Calculate the determinant of the following lower triangular matrix:} \] \[ B = \begin{pmatrix} 2 & 0 & 0 \\ 3 & 4 & 0 \\ 1 & 6 & 5 \end{pmatrix} \] Question #3: \[ \textbf{ Calculate the determinant of the following upper triangular matrix:} \] \[ C = \begin{pmatrix} 7 & 2 & 1 \\ 0 & 3 & 4 \\ 0 & 0 & 9 \end{pmatrix} \] Question #4: \[ \textbf{Calculate the determinant of the following lower triangular matrix:} \] \[ D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 8 \end{pmatrix} \]

Solutions

\[ \text{Recall: The determinant of a triangular matrix is the product of the diagonal elements.} \]

Question #1:

\[ \textbf{ Calculate the determinant of the following upper triangular matrix:} \] \[ A = \begin{pmatrix} 4 & 3 & 2 \\ 0 & 5 & 1 \\ 0 & 0 & 6 \end{pmatrix} \] \[ \text{Since this is an upper triangular matrix, we calculate the determinant by multiplying the diagonal elements:} \] \[ \text{det}(A) = 4 \times 5 \times 6 = 120 \] \[ \textbf{Answer: The determinant of matrix } A \text{ is } 120. \]

Question #2:

\[ \textbf{ Calculate the determinant of the following lower triangular matrix:} \] \[ B = \begin{pmatrix} 2 & 0 & 0 \\ 3 & 4 & 0 \\ 1 & 6 & 5 \end{pmatrix} \] \[ \text{Since this is a lower triangular matrix, we calculate the determinant by multiplying the diagonal elements:} \] \[ \text{det}(B) = 2 \times 4 \times 5 = 40 \] \[ \textbf{Answer: The determinant of matrix } B \text{ is } 40. \]

Question #3:

\[ \textbf{ Calculate the determinant of the following upper triangular matrix:} \] \[ C = \begin{pmatrix} 7 & 2 & 1 \\ 0 & 3 & 4 \\ 0 & 0 & 9 \end{pmatrix} \] \[ \text{Since this is an upper triangular matrix, we calculate the determinant by multiplying the diagonal elements:} \] \[ \text{det}(C) = 7 \times 3 \times 9 = 189 \] \[ \textbf{Answer: The determinant of matrix } C \text{ is } 189. \]

Question #4:

\[ \textbf{Calculate the determinant of the following lower triangular matrix:} \] \[ D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 8 \end{pmatrix} \] \[ \text{Since this is a lower triangular matrix, we calculate the determinant by multiplying the diagonal elements:} \] \[ \text{det}(D) = 1 \times (-3) \times 8 = -24 \] \[ \textbf{Answer: The determinant of matrix } D \text{ is } -24. \]

Leave a Comment

All Copyrights Reserved 2025 Reserved by T4Tutorials