Commutative Algebra – MCQs

By: Prof. Dr. Fazal Rehman | Last updated: February 14, 2025

Question 1:

\[ \text{Which of the following is an integral domain but not a field?} \] \[ \text{(a) } \mathbb{Z}, \quad \text{(b) } \mathbb{Q}, \quad \text{(c) } \mathbb{R}, \quad \text{(d) } \mathbb{C} \] Answer: A

Question 2:

\[ \text{Let } R \text{ be a commutative ring with unity. If } R \text{ has no zero divisors, what is } R \text{ called?} \] \[ \text{(a) } A field, \quad \text{(b) } A division ring, \quad \text{(c) } An integral domain, \quad \text{(d) } A group \] Answer: C

Question 3:

\[ \text{Which of the following is NOT a property of an ideal in a commutative ring?} \] \[ \text{(a) } Closure under addition, \quad \text{(b) } Closure under multiplication by ring elements, \quad \text{(c) } Containing the multiplicative identity, \quad \text{(d) } Closure under additive inverses \] Answer: C

Question 4:

\[ \text{What is the characteristic of the ring } \mathbb{Z}/7\mathbb{Z} \text{?} \] \[ \text{(a) } 0, \quad \text{(b) } 1, \quad \text{(c) } 7, \quad \text{(d) } None of these \] Answer: C

Question 5:

\[ \text{Which of the following rings is a principal ideal domain (PID)?} \] \[ \text{(a) } \mathbb{Z}, \quad \text{(b) } \mathbb{Z}[x], \quad \text{(c) } \mathbb{Z}[\sqrt{2}], \quad \text{(d) } \mathbb{Q}[x] \] Answer: A

Question 6:

\[ \text{The nilradical of a commutative ring consists of:} \] \[ \text{(a) } Units, \quad \text{(b) } Zero divisors, \quad \text{(c) } Nilpotent elements, \quad \text{(d) } Prime elements \] Answer: C

Question 7:

\[ \text{Which of the following is NOT an example of a Noetherian ring?} \] \[ \text{(a) } \mathbb{Z}, \quad \text{(b) } \mathbb{Q}[x], \quad \text{(c) } \mathbb{R}[x_1, x_2, \dots], \quad \text{(d) } \mathbb{C}[x] \] Answer: C

Question 8:

\[ \text{A maximal ideal in a commutative ring is always:} \] \[ \text{(a) } A prime ideal, \quad \text{(b) } A principal ideal, \quad \text{(c) } A zero ideal, \quad \text{(d) } A unit \] Answer: A

Question 9:

\[ \text{If } R \text{ is a commutative ring with unity, the set of all units in } R \text{ is called:} \] \[ \text{(a) } An ideal, \quad \text{(b) } A group, \quad \text{(c) } A subring, \quad \text{(d) } A field \] Answer: B

Question 10:

\[ \text{Which of the following rings is a unique factorization domain (UFD)?} \] \[ \text{(a) } \mathbb{Z}, \quad \text{(b) } \mathbb{Z}[x], \quad \text{(c) } \mathbb{Q}[x], \quad \text{(d) } All of these \] Answer: D

Question 11:

\[ \text{A ring } R \text{ is called a local ring if it has exactly one:} \] \[ \text{(a) } Ideal, \quad \text{(b) } Maximal ideal, \quad \text{(c) } Prime ideal, \quad \text{(d) } Nilradical \] Answer: B

Question 12:

\[ \text{The ring } \mathbb{Z}/4\mathbb{Z} \text{ is:} \] \[ \text{(a) } A field, \quad \text{(b) } An integral domain, \quad \text{(c) } A ring with zero divisors, \quad \text{(d) } A Noetherian ring \] Answer: C

Question 13:

\[ \text{Which of the following statements is true?} \] \[ \text{(a) } Every PID is a UFD, \quad \text{(b) } Every UFD is a PID, \quad \text{(c) } Every integral domain is a PID, \quad \text{(d) } Every field is a UFD \] Answer: A

Question 14:

\[ \text{An ideal } I \text{ of a commutative ring } R \text{ is prime if:} \] \[ \text{(a) } ab \in I \Rightarrow a \in I \text{ or } b \in I, \quad \text{(b) } I = R, \quad \text{(c) } I \text{ is maximal}, \quad \text{(d) } I \text{ contains units} \] Answer: A

Question 15:

\[ \text{If } I \text{ is an ideal of } R, \text{ then } R/I \text{ is a field if and only if } I \text{ is:} \] \[ \text{(a) } A maximal ideal, \quad \text{(b) } A prime ideal, \quad \text{(c) } A principal ideal, \quad \text{(d) } A radical ideal \] Answer: A

Question 16:

\[ \text{The polynomial ring } \mathbb{Q}[x] \text{ is:} \] \[ \text{(a) } A PID, \quad \text{(b) } A UFD, \quad \text{(c) } A field, \quad \text{(d) } None of these \] Answer: B

Question 17:

\[ \text{Which of the following rings is NOT a domain?} \] \[ \text{(a) } \mathbb{Z}, \quad \text{(b) } \mathbb{Q}, \quad \text{(c) } \mathbb{Z}/6\mathbb{Z}, \quad \text{(d) } \mathbb{Q}[x] \] Answer: C

Question 18:

\[ \text{A Noetherian ring is one in which:} \] \[ \text{(a) } Every ideal is finitely generated, \quad \text{(b) } Every prime ideal is maximal, \quad \text{(c) } The ring is a UFD, \quad \text{(d) } None of these \] Answer: A

Question 19:

\[ \text{Which of the following is an example of an Artinian ring?} \] \[ \text{(a) } A field, \quad \text{(b) } \mathbb{Z}, \quad \text{(c) } \mathbb{Q}[x], \quad \text{(d) } None of these \] Answer: A

Question 20:

\[ \text{The radical of an ideal } I \text{ in } R \text{ consists of:} \] \[ \text{(a) } Nilpotent elements, \quad \text{(b) } Prime elements, \quad \text{(c) } Units, \quad \text{(d) } None of these \] Answer: A

Leave a Comment

All Copyrights Reserved 2025 Reserved by T4Tutorials