Laplace Transform MCQs

Question 1:

\[ \text{What is the Laplace transform of } \delta(t) \text{, where } \delta(t) \text{ is the Dirac delta function?} \] \[ \text{(a) } 1, \quad \text{(b) } 0, \quad \text{(c) } \infty, \quad \text{(d) } \text{undefined} \] Answer: A

Question 2:

\[ \text{What is the Laplace transform of } e^{at}? \] \[ \text{(a) } \frac{1}{s-a}, \quad \text{(b) } \frac{1}{s+a}, \quad \text{(c) } \frac{s}{s^2 + a^2}, \quad \text{(d) } \frac{a}{s^2 + a^2} \] Answer: A

Question 3:

\[ \text{What is the Laplace transform of } \sin(at)? \] \[ \text{(a) } \frac{a}{s^2 + a^2}, \quad \text{(b) } \frac{s}{s^2 + a^2}, \quad \text{(c) } \frac{1}{s+a}, \quad \text{(d) } \frac{1}{s^2 + a^2} \] Answer: A

Question 4:

\[ \text{What is the Laplace transform of } \cos(at)? \] \[ \text{(a) } \frac{s}{s^2 + a^2}, \quad \text{(b) } \frac{a}{s^2 + a^2}, \quad \text{(c) } \frac{1}{s^2 + a^2}, \quad \text{(d) } \frac{s}{s+a} \] Answer: A

Question 5:

\[ \text{What is the Laplace transform of } t^n? \] \[ \text{(a) } \frac{n!}{s^{n+1}}, \quad \text{(b) } \frac{1}{s^{n+1}}, \quad \text{(c) } \frac{n}{s^{n+1}}, \quad \text{(d) } \frac{1}{n!s^{n+1}} \] Answer: A

Question 6:

\[ \text{What is the Laplace transform of } \frac{1}{t}? \] \[ \text{(a) } \ln(s), \quad \text{(b) } \frac{1}{s}, \quad \text{(c) } \frac{1}{s^2}, \quad \text{(d) } \text{undefined} \] Answer: D

Question 7:

\[ \text{What is the inverse Laplace transform of } \frac{1}{s(s+1)}? \] \[ \text{(a) } 1 – e^{-t}, \quad \text{(b) } e^{-t}, \quad \text{(c) } 1 + e^{-t}, \quad \text{(d) } 1 – e^{t} \] Answer: A

Question 8:

\[ \text{The Laplace transform of the derivative } \frac{d}{dt}[f(t)] \text{ is:} \] \[ \text{(a) } sF(s) – f(0), \quad \text{(b) } sF(s) + f(0), \quad \text{(c) } F(s) – f(0), \quad \text{(d) } sF(s) \] Answer: A

Question 9:

\[ \text{The Laplace transform of a step function } u(t-a) \text{ is:} \] \[ \text{(a) } \frac{1}{s}, \quad \text{(b) } \frac{e^{-as}}{s}, \quad \text{(c) } \frac{1}{s^2}, \quad \text{(d) } \frac{1}{s+a} \] Answer: B

Question 10:

\[ \text{The Laplace transform of } \int_0^t f(\tau) d\tau \text{ is:} \] \[ \text{(a) } \frac{F(s)}{s}, \quad \text{(b) } sF(s), \quad \text{(c) } F(s), \quad \text{(d) } F(s) + \frac{1}{s} \] Answer: A

Leave a Comment

All Copyrights Reserved 2025 Reserved by T4Tutorials