x² y² dx 2xydy 0

By: Prof. Dr. Fazal Rehman | Last updated: November 30, 2024

[latex] \[ \textbf{Q: Solve the differential equation:} \quad x^2 y^2 \, dx – 2xy \, dy = 0 \] \[ \textbf{Step 1: Rearrange the equation} \] Rearrange the equation to separate variables: \[ x^2 y^2 \, dx = 2xy \, dy \] \[ \textbf{Step 2: Separate the variables} \] We can now separate the variables \(x\) and \(y\): \[ \frac{x^2}{xy} \, dx = \frac{2}{y} \, dy \] Simplifying the terms: \[ \frac{x}{y} \, dx = \frac{2}{y} \, dy \] \[ \textbf{Step 3: Integrate both sides} \] Now, integrate both sides: \[ \int \frac{x}{y} \, dx = \int \frac{2}{y} \, dy \] On integrating: \[ \frac{x^2}{2} = 2 \ln |y| + C \] \[ \textbf{Step 4: Solve for y} \] To solve for \(y\), first isolate \( \ln |y| \): \[ \ln |y| = \frac{x^2}{4} + C_1 \] Exponentiate both sides: \[ |y| = e^{\frac{x^2}{4} + C_1} \] Since \( e^{C_1} \) is a constant, we can write it as a new constant \( C_2 \): \[ |y| = C_2 e^{\frac{x^2}{4}} \] Thus, the general solution is: \[ y = C e^{\frac{x^2}{4}} \] where \(C\) is a constant. \[ \textbf{Final Solution:} \] \[ y = C e^{\frac{x^2}{4}} \]
All Copyrights Reserved 2025 Reserved by T4Tutorials