Posted in

Division of Matrices Exercise

\[
\textbf{Exercise on Division of Matrices with Step-by-Step Solutions}
\]

  1. \[
    \textbf{Divide the matrix } A = \begin{pmatrix} 6 & 3 \\ 9 & 12 \end{pmatrix} \textbf{ by the matrix } B = \begin{pmatrix} 3 & 1 \\ 3 & 4 \end{pmatrix}.
    \] Solution
  2. \[
    \textbf{ Divide the Square Matrix A by the Square Matrix B, where:}
    \]
    \[
    A = \begin{pmatrix} 8 & 4 \\ 2 & 6 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}
    \] Solution
  3. \[
    \textbf{Divide the Diagonal Matrix A by the Diagonal Matrix B, where:}
    \]
    \[
    A = \begin{pmatrix} 6 & 0 \\ 0 & 9 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}
    \] Solution
  4. \[
    \textbf{Divide the Scalar Matrix A by the Scalar Matrix B, where:}
    \]
    \[
    A = \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}
    \] Solution
  5. \[
    \textbf{Q4: Divide the Identity Matrix A by the Identity Matrix B, where:}
    \]
    \[
    A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}
    \] Solution
  6. \[
    \textbf{Divide the Zero Matrix A by the Zero Matrix B, where:}
    \]
    \[
    A = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}
    \] Solution
  7. \[
    \textbf{Divide the Symmetric Matrix A by the Skew-Symmetric Matrix B, where:}
    \]
    \[
    A = \begin{pmatrix} 4 & 2 \\ 2 & 4 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}
    \] Solution

 CEO @ T4Tutorials.com
I welcome to all of you if you want to discuss about any topic. Researchers, teachers and students are allowed to use the content for non commercial offline purpose. Further, You must use the reference of the website, if you want to use the partial content for research purpose.

Leave a Reply

Contents Copyrights Reserved By T4Tutorials