Posted in

Vector and Tensor Analysis MCQs

\[
\textbf{MCQs on Vector and Tensor Analysis with Answers}
\]

\[
\textbf{Q1: The divergence of the vector field } \vec{F} = \nabla \cdot \vec{F} \text{ is:}
\]
\[
\text{(A) } \text{A scalar quantity} \quad
\text{(B) } \text{A vector quantity} \quad
\text{(C) } \text{A tensor quantity} \quad
\text{(D) } \text{None of these}
\]
\[
\textbf{Answer: (A) } \text{A scalar quantity}
\]

\[
\textbf{Q2: The curl of a vector field } \vec{F} \text{ is given by:}
\]
\[
\text{(A) } \nabla \cdot \vec{F} \quad
\text{(B) } \nabla \times \vec{F} \quad
\text{(C) } |\nabla| \vec{F} \quad
\text{(D) } \vec{F} \cdot \nabla
\]
\[
\textbf{Answer: (B) } \nabla \times \vec{F}
\]

\[
\textbf{Q3: A tensor of rank 2 in three-dimensional space has how many components?}
\]
\[
\text{(A) } 6 \quad
\text{(B) } 9 \quad
\text{(C) } 3 \quad
\text{(D) } 12
\]
\[
\textbf{Answer: (B) } 9
\]

\[
\textbf{Q4: The gradient of a scalar field is:}
\]
\[
\text{(A) } A scalar field \quad
\text{(B) } A vector field \quad
\text{(C) } A tensor field \quad
\text{(D) } None of these
\]
\[
\textbf{Answer: (B) } A vector field
\]

\[
\textbf{Q5: Which of the following is true for a symmetric tensor?}
\]
\[
\text{(A) } T_{ij} = -T_{ji} \quad
\text{(B) } T_{ij} = T_{ji} \quad
\text{(C) } T_{ij} \neq T_{ji} \quad
\text{(D) } T_{ij} = 0
\]
\[
\textbf{Answer: (B) } T_{ij} = T_{ji}
\]

\[
\textbf{Q6: The determinant of the metric tensor in Cartesian coordinates is:}
\]
\[
\text{(A) } 0 \quad
\text{(B) } 1 \quad
\text{(C) } -1 \quad
\text{(D) } None of these
\]
\[
\textbf{Answer: (B) } 1
\]

\[
\textbf{Q7: The dot product of two vectors results in:}
\]
\[
\text{(A) } A scalar quantity \quad
\text{(B) } A vector quantity \quad
\text{(C) } A tensor quantity \quad
\text{(D) } None of these
\]
\[
\textbf{Answer: (A) } A scalar quantity
\]

\[
\textbf{Q8: A tensor that remains invariant under coordinate transformations is called:}
\]
\[
\text{(A) } A vector \quad
\text{(B) } A scalar \quad
\text{(C) } An isotropic tensor \quad
\text{(D) } A covariant tensor
\]
\[
\textbf{Answer: (C) } An isotropic tensor
\]

\[
\textbf{Q9: The rank of the Kronecker delta } \delta_{ij} \text{ is:}
\]
\[
\text{(A) } 0 \quad
\text{(B) } 1 \quad
\text{(C) } 2 \quad
\text{(D) } None of these
\]
\[
\textbf{Answer: (C) } 2
\]

\[
\textbf{Q10: The divergence theorem relates the surface integral of a vector field to:}
\]
\[
\text{(A) } Its curl \quad
\text{(B) } Its gradient \quad
\text{(C) } Its divergence \quad
\text{(D) } None of these
\]
\[
\textbf{Answer: (C) } Its divergence
\]

 CEO @ T4Tutorials.com
I welcome to all of you if you want to discuss about any topic. Researchers, teachers and students are allowed to use the content for non commercial offline purpose. Further, You must use the reference of the website, if you want to use the partial content for research purpose.

Leave a Reply

Contents Copyrights Reserved By T4Tutorials