1. : What is the purpose of the negative transformation in image processing?
(A) Enhance edges
(B) Highlight high-intensity values
(C) Invert image intensities
(D) Apply histogram equalization
2. : Which basic transformation is defined by the formula s = L – 1 – r?
(A) Log Transformation
(B) Negative Transformation
(C) Power-law Transformation
(D) Thresholding
3. : What does ‘r’ typically represent in image transformation functions?
(A) Filter value
(B) Pixel location
(C) Input intensity level
(D) Image size
4. : Which transformation is suitable for expanding the values of dark pixels in an image while compressing the brighter ones?
(A) Log Transformation
(B) Negative Transformation
(C) Gamma < 1 in Power-law
(D) Thresholding
5. : The log transformation function is generally expressed as:
(A) s = log(r + 1)
(B) s = L – r
(C) s = c * log(1 + r)
(D) s = r^γ
6. : What role does the constant ‘c’ play in the log and power-law transformations?
(A) Controls direction
(B) Adjusts image resolution
(C) Scales the output intensity
(D) Reduces contrast
7. : Power-law transformation is commonly referred to as:
(A) Negative scaling
(B) Gamma correction
(C) Bit slicing
(D) Masking
8. : Which of the following is used to correct image brightness in displays?
(A) Log transform
(B) Negative transform
(C) Gamma correction
(D) Laplacian filter
9. : If γ > 1 in power-law transformation, what effect is observed?
(A) Bright areas get darker
(B) Image is inverted
(C) Overall image gets lighter
(D) Pixels are blurred
10. : In power-law transformation, the formula is:
(A) s = c + log(r)
(B) s = c * r^γ
(C) s = 1 / (1 + r^2)
(D) s = r – c
11. : Log transformations are effective in:
(A) Enhancing background noise
(B) Displaying low intensity details
(C) Compressing shadows
(D) Equalizing histogram
12. : Negative transformation is mostly used for:
(A) Grayscale compression
(B) Medical imaging like x-rays
(C) Histogram equalization
(D) Reducing contrast
13. : Which transformation can enhance details in dark regions more than in bright regions?
(A) Negative
(B) Logarithmic
(C) Linear
(D) Thresholding
14. : When using gamma correction with γ < 1, the output image becomes:
(A) Darker
(B) Inverted
(C) Brighter
(D) No change
15. : Negative of a grayscale image in 8-bit representation is obtained by:
(A) Subtracting pixel value from 128
(B) Using r^2
(C) Subtracting from 255
(D) Using s = log(r)
16. : What kind of function is s = c * r^γ?
(A) Linear
(B) Exponential
(C) Power-law
(D) Logarithmic
17. : For an image with high dynamic range, which transformation is best suited?
(A) Power-law
(B) Thresholding
(C) Logarithmic
(D) Negative
18. : Negative image transformation flips:
(A) Image vertically
(B) Pixel values around midpoint
(C) Contrast histogram
(D) Image axes
19. : In power-law transformation, which value of gamma increases contrast in bright regions?
1′)” /> (A) 0.5
1′)” /> (B) 1
1″ onclick=”checkAnswer(‘q19’, ‘>1’)” /> (C) >1
1′)” /> (D) 0
20. : Gamma correction is essential in:
(A) Printing
(B) Image compression
(C) Display systems
(D) Audio processing
21. : Which transformation maps high input intensity values to low output intensities?
1′)” /> (A) Negative
1′)” /> (B) Linear
1′)” /> (C) Log
1″ onclick=”checkAnswer(‘q21’, ‘Power-law with γ > 1’)” /> (D) Power-law with γ > 1
22. : The logarithmic transformation compresses:
(A) Dark pixels
(B) All pixels equally
(C) Bright pixel values
(D) Histogram size
23. : Which transformation is NOT non-linear?
(A) Logarithmic
(B) Negative
(C) Power-law
(D) Histogram equalization
24. : In gamma correction, if the output is too bright, the likely cause is:
(A) γ < 1
1″ onclick=”checkAnswer(‘q24’, ‘γ < 1')" /> (B) γ > 1
(C) Missing constant
(D) Low-pass filtering
25. : Which transformation would convert a dark image to a brighter one using exponentiation?
(A) s = log(r + 1)
(B) s = 255 – r
(C) s = c * r^γ with γ < 1
(D) s = c * log(r)
26. : What is the effect of applying a negative transformation to an image with mostly bright areas?
(A) It becomes blurred
(B) It becomes darker
(C) It becomes sharper
(D) It remains unchanged
27. : The power-law transformation is particularly useful for correcting:
(A) Blurry images
(B) Noise
(C) Illumination problems
(D) Edge detection
28. : Which transformation emphasizes details in low-intensity pixel regions?
(A) Negative
(B) Log
1″ onclick=”checkAnswer(‘q28’, ‘Log’)” /> (C) Gamma > 1
(D) Inverse transform
29. : In 8-bit images, the range of pixel values is:
(A) 0–100
(B) 0–127
(C) 0–255
(D) 0–512
30. : Which transformation would you use to reverse the brightness levels of an image?
(A) Log
(B) Gamma
(C) Negative
(D) Threshold
31. : The primary purpose of log transformation is to:
(A) Invert image colors
(B) Suppress high intensity values
(C) Enhance edges
(D) Increase spatial resolution
32. : In power-law transformation, γ = 1 represents:
(A) Negative transform
(B) Linear transform
(C) Log transform
(D) Binary threshold
33. : In a negative image, black becomes:
(A) White
(B) Gray
(C) Unchanged
(D) Inverted
34. : Which transformation compresses the dynamic range of pixel values?
(A) Histogram Equalization
(B) Logarithmic
1″ onclick=”checkAnswer(‘q34’, ‘Logarithmic’)” /> (C) Power-law with γ > 1
(D) Negative
35. : The power-law transformation is also known as:
(A) Contrast inversion
(B) Log enhancement
(C) Gamma correction
(D) Histogram spreading
36. : A gamma value of 0.4 in power-law transform causes:
(A) No change
(B) Contrast to increase in bright regions
(C) Image darkening
(D) Image brightening
37. : Which transformation is linear among the following?
(A) Negative
(B) Gamma correction
(C) Log
(D) s = a * r + b
38. : Which transformation is best for compressing high-intensity values?
1″ onclick=”checkAnswer(‘q38’, ‘Logarithmic’)” /> (A) Power-law with γ > 1
(B) Negative
(C) Logarithmic
(D) Linear
39. : Power-law transformations can be used to model:
(A) Color inversion
(B) Human visual perception
(C) Noise filtering
(D) Spatial resolution
40. : Negative transformation is applied mainly on:
(A) Color images
(B) Binary images
(C) Grayscale images
(D) Noise images
41. : Log transformation is not suitable for:
(A) Displaying bright pixels
(B) Enhancing details in dark areas
(C) Compressing large intensity values
(D) Expanding low values
42. : A gamma value equal to 1 means:
(A) Log transform
(B) Negative
(C) No change
(D) Inversion
43. : In the log transformation function, the log base used is typically:
(A) 2
(B) 10
(C) e
(D) Irrelevant, as scaling constant manages it
44. : Which transformation can visually reverse an X-ray image?
(A) Logarithmic
(B) Negative
(C) Linear
(D) Threshold
45. : Gamma correction is most important in:
(A) Scanning
(B) Display monitors
(C) Compression
(D) Noise reduction
46. : What happens when you apply power-law transformation with γ < 1?
(A) The image darkens
(B) The image gets noisier
(C) The image brightens
(D) No change
47. : In power-law transformation, the exponent γ is:
1′)” /> (A) Always 1
1″ onclick=”checkAnswer(‘q47’, ‘Can be < 1 or > 1′)” /> (B) Can be < 1 or > 1
1′)” /> (C) Always < 1
1′)” /> (D) Used for thresholding
48. : Which transformation is useful for correcting underexposed images?
(A) Log
(B) Negative
(C) Power-law with γ < 1
(D) Histogram equalization
49. : Which transformation is NOT used to manipulate pixel intensity values?
(A) Negative
(B) Log
(C) Gamma
(D) Dilation
50. : Power-law transformation modifies pixel intensities based on:
(A) Their color
(B) Logarithmic scale
(C) An exponential function
(D) A power function
