Site icon T4Tutorials.com

Histogram Equalization & Specification — MCQs | Digital Image Processing

1. : Histogram equalization primarily aims to

(A) blur the image


(B) sharpen the image


(C) improve contrast


(D) reduce noise



2. : In histogram equalization, the transformation function is based on

(A) mean of intensities


(B) cumulative distribution function


(C) standard deviation


(D) histogram slope



3. : Histogram specification is also known as

(A) histogram remapping


(B) histogram clipping


(C) histogram shifting


(D) histogram matching



4. : Which operation produces a uniform output histogram?

(A) specification


(B) equalization


(C) shifting


(D) smoothing



5. : A disadvantage of histogram equalization is that it can

(A) reduce brightness


(B) create unnatural look


(C) require more computation


(D) blur edges



6. : Histogram specification uses a specified histogram for

(A) source image only


(B) target image only


(C) both source and target images


(D) neither



7. : The mapping in histogram equalization is

(A) linear


(B) non‑linear


(C) constant


(D) sinusoidal



8. : Histogram equalization is most effective when input histogram is

(A) uniform


(B) narrow and clustered


(C) bi‑modal


(D) sparse and wide



9. : Histogram specification requires two steps: equalize source, then

(A) invert the CDF


(B) apply target CDF


(C) normalize intensities


(D) smooth the histogram



10. : In histogram equalization, if input image has a large number of identical intensities, output may have

(A) full dynamic range


(B) gaps


(C) duplicate intensities


(D) negative values



11. : Which term describes the desired histogram in specification?

(A) source histogram


(B) equalized histogram


(C) reference histogram


(D) smoothed histogram



12. : Histogram equalization does not require a reference image. True or False?

(A) True


(B) False


(C) Sometimes


(D) Not applicable



13. : For grayscale images with L levels, the equalization mapping is:

(A) sᵢ = (L‑1) * ∑ p(rⱼ)


(B) sᵢ = ∑ rᵢ


(C) sᵢ = L * rᵢ


(D) sᵢ = ∑ rᵢ / L



14. : Histogram specification can achieve a histogram that is

(A) arbitrary shape


(B) always Gaussian


(C) always uniform


(D) histogram equalization outcome only



15. : After histogram equalization, mean intensity typically shifts toward

(A) mid‑range


(B) lowest intensity


(C) highest intensity


(D) unchanged



16. : Histogram equalization is a

(A) global enhancement


(B) local enhancement


(C) edge detection


(D) frequency domain method



17. : A disadvantage of histogram specification is needing

(A) more memory


(B) a reference histogram


(C) color images only


(D) local operators



18. : Histogram equalization stretches the dynamic range by redistributing pixel intensities across

(A) one channel


(B) two channels


(C) available levels


(D) spatial domain only



19. : Equalization is less effective on images that already have

(A) low contrast


(B) uniform brightness


(C) narrow histograms


(D) high noise



20. : In histogram specification, mapping functions are derived from two CDFs: source and

(A) input


(B) output/reference


(C) mean


(D) difference



21. : Which process can preserve specific tonal characteristics?

(A) histogram equalization


(B) histogram specification


(C) convolution


(D) edge detection



22. : In equalization, the output histogram approximates

(A) Gaussian distribution


(B) Poisson distribution


(C) uniform distribution


(D) Laplacian distribution



23. : Which type of images may suffer over‑enhancement after equalization?

(A) underwater


(B) medical scans


(C) natural scenery


(D) portrait images



24. : Histogram specification can map a dark image to resemble

(A) same histogram as the source


(B) bright image histogram


(C) equalized version only


(D) smaller histogram



25. : The complexity of both equalization and specification algorithms is on the order of

(A) O(n log n)


(B) O(n²)


(C) O(n)


(D) O(nL)



26. : Histogram equalization is applied in

(A) spatial domain


(B) frequency domain


(C) wavelet domain


(D) gradient domain



27. : Histogram specification can better match

(A) average brightness


(B) contrast distribution


(C) texture details


(D) edge strength



28. : If the reference histogram is uniform, specification is equivalent to

(A) smoothing


(B) equalization


(C) thresholding


(D) normalization



29. : Mapping functions in specification may not be strictly monotonic if

(A) histograms are noisy


(B) reference distribution is discrete


(C) intensities repeat


(D) functions always monotonic



30. : Histogram equalization may amplify

(A) noise


(B) edges


(C) color fidelity


(D) segmentation



31. : In color images, histogram equalization is typically done on

(A) each RGB channel separately


(B) intensity channel only


(C) hue channel only


(D) saturation channel only



32. : Global histogram equalization can fail when image has varying

(A) illumination across regions


(B) uniform texture


(C) high resolution


(D) grayscale only



33. : A local version of histogram equalization is called

(A) adaptive histogram equalization (AHE)


(B) Fourier equalization


(C) gradient equalization


(D) CDF equalization



34. : Histogram specification is useful to standardize images from

(A) same camera only


(B) different sources


(C) low contrast only


(D) grayscale only



35. : Equalization mapping s = T(r) ensures T is

(A) discontinuous


(B) non‑decreasing


(C) decreasing


(D) constant



36. : Histogram equalization requires calculating

(A) spatial gradients


(B) intensity derivative


(C) cumulative histogram


(D) edge map



37. : In histogram specification, the inverse mapping is used to find

(A) source CDF values


(B) reference intensity for a given output


(C) gradient threshold


(D) image mean



38. : If two different reference histograms produce identical images under specification, they must be

(A) identical shapes


(B) complementary


(C) random


(D) scalar multiples



39. : Histogram equalization is best for images with

(A) high contrast detail


(B) flat brightness


(C) many saturated pixels


(D) high noise level



40. : Histogram specification cannot generate

(A) dark output from bright input


(B) histogram narrower than source


(C) specified output histogram


(D) mapping inversion



41. : Which method can preserve histogram shape?

(A) equalization


(B) specification


(C) smoothing


(D) thresholding



42. : In specification, if reference histogram is darker, output will be

(A) brighter


(B) darker


(C) unchanged


(D) inverted



43. : Histogram equalization tends to stretch regions with

(A) low slope in CDF


(B) high slope in histogram


(C) uniform probabilities


(D) zero frequencies



44. : Mapping table for equalization is often implemented via

(A) lookup table (LUT)


(B) convolution filter


(C) wavelet filter


(D) histogram smoothing



45. : Which method deals with user‑defined output histogram?

(A) histogram equalization


(B) histogram specification


(C) thresholding


(D) edge enhancement



46. : Histogram equalization will map the lowest input intensity to

(A) zero


(B) mid‑level


(C) highest level


(D) undefined



47. : After specification, the output histogram matches the reference ideally if

(A) both histograms continuous


(B) mapping exact inverse exists


(C) source has all gray‑levels


(D) operations global



48. : A limitation of histogram matching is poor results if the reference histogram is

(A) very smooth


(B) extremely peaked


(C) uniform


(D) flat



49. : Enhanced contrast after equalization is subjectively pleasing when

(A) image has correct exposure


(B) image underexposed or overexposed


(C) edges are blurred


(D) colors are synthetic



50. : Both histogram equalization and specification are

(A) spatial domain techniques


(B) frequency domain techniques


(C) color space conversions


(D) segmentation tools



More MCQs on Digital image Processing

  1. Introduction to DIP — MCQs | Digital Image Processing

  2. Human Visual System (HVS) — MCQs | Digital Image Processing

  3. Image Acquisition Devices — MCQs | Digital Image Processing

  4. Image Sampling & Quantization — MCQs | Digital Image Processing

  5. Image Resolution & Bit Depth — MCQs | Digital Image Processing

  6. Basic Image Operations (Negative, Log, Power-law) — MCQs | Digital Image Processing

  7. Histogram Equalization & Specification — MCQs | Digital Image Processing

  8. Contrast Stretching — MCQs | Digital Image Processing

  9. Image Arithmetic (Add, Subtract, Multiply, Divide) — MCQs | Digital Image Processing

  10. Bit-plane Slicing — MCQs | Digital Image Processing

  11. Smoothing Filters (Mean, Gaussian, Median) — MCQs | Digital Image Processing

  12. Sharpening Filters (Laplacian, Gradient) — MCQs | Digital Image Processing

  13. High-Boost Filtering — MCQs | Digital Image Processing

  14. Edge Detection (Sobel, Prewitt, Roberts, Canny, LoG) — MCQs | Digital Image Processing

  15. Fourier Transform (DFT, FFT) — MCQs | Digital Image Processing

  16. Frequency Domain Filtering — MCQs | Digital Image Processing

  17. Low-pass & High-pass Filters — MCQs | Digital Image Processing

  18. Homomorphic Filtering — MCQs | Digital Image Processing

  19. Noise Models (Gaussian, Salt & Pepper, Speckle) — MCQs | Digital Image Processing

  20. Adaptive Filtering — MCQs | Digital Image Processing

  21. Inverse & Wiener Filtering — MCQs | Digital Image Processing

  22. Pseudo-color & True-color Processing — MCQs | Digital Image Processing

  23. Color Space Conversion (RGB ↔ HSV, HSI, YCbCr) — MCQs | Digital Image Processing

  24. Color Image Enhancement — MCQs | Digital Image Processing

  25. Image Segmentation (Thresholding, Otsu, K-means, Region Growing) — MCQs | Digital Image Processing

  26. Edge-based Segmentation — MCQs | Digital Image Processing

  27. Region Splitting and Merging — MCQs | Digital Image Processing

  28. Watershed Algorithm — MCQs | Digital Image Processing

  29. Morphological Operations (Erosion, Dilation, Opening, Closing) — MCQs | Digital Image Processing

  30. Boundary Extraction — MCQs | Digital Image Processing

  31. Skeletonization — MCQs | Digital Image Processing

  32. Connected Components Labeling — MCQs | Digital Image Processing

  33. Texture Analysis (GLCM, LBP, Gabor Filters) — MCQs | Digital Image Processing

  34. Shape Descriptors (Perimeter, Area, Compactness, Eccentricity) — MCQs | Digital Image Processing

  35. Statistical Features (Mean, Variance, Skewness) — MCQs | Digital Image Processing

  36. Principal Component Analysis (PCA) — MCQs | Digital Image Processing

  37. Linear Discriminant Analysis (LDA) — MCQs | Digital Image Processing

  38. Feature Matching (SIFT, SURF, ORB) — MCQs | Digital Image Processing

  39. Image Registration — MCQs | Digital Image Processing

  40. Image Stitching — MCQs | Digital Image Processing

  41. Motion Detection & Optical Flow — MCQs | Digital Image Processing

  42. Background Subtraction — MCQs | Digital Image Processing

  43. Object Detection & Tracking — MCQs | Digital Image Processing

  44. Template Matching — MCQs | Digital Image Processing

  45. Pattern Recognition (KNN, SVM, ANN) — MCQs | Digital Image Processing

  46. Image Classification — MCQs | Digital Image Processing

  47. Image Clustering — MCQs | Digital Image Processing

  48. Image Compression (RLE, Huffman, LZW, JPEG, JPEG2000) — MCQs | Digital Image Processing

  49. Video Compression (MPEG, H.264) — MCQs | Digital Image Processing

  50. Image Fusion (Pixel, Feature, Decision Level) — MCQs | Digital Image Processing

  51. Image Watermarking — MCQs | Digital Image Processing

  52. Steganography — MCQs | Digital Image Processing

  53. Face Detection & Recognition — MCQs | Digital Image Processing

  54. Gesture Recognition — MCQs | Digital Image Processing

  55. 3D Image Processing — MCQs | Digital Image Processing

  56. Stereo Vision & Depth Estimation — MCQs | Digital Image Processing

  57. Medical Image Analysis (CT, MRI, Ultrasound) — MCQs | Digital Image Processing

  58. Remote Sensing Image Processing — MCQs | Digital Image Processing

  59. Satellite Image Enhancement — MCQs | Digital Image Processing

  60. Deep Learning for Image Processing (CNN, GANs, Autoencoders) — MCQs | Digital Image Processing

  61. Image Captioning — MCQs | Digital Image Processing

  62. Semantic & Instance Segmentation (Mask R-CNN, U-Net) — MCQs | Digital Image Processing

  63. Super Resolution (SRCNN, ESRGAN) — MCQs | Digital Image Processing

  64. Image Inpainting — MCQs | Digital Image Processing

  65. Image Style Transfer — MCQs | Digital Image Processing

  66. Real-Time Image Processing — MCQs | Digital Image Processing

  67. Augmented Reality (AR) & Virtual Reality (VR) — MCQs | Digital Image Processing

  68. DIP using MATLAB/OpenCV/Python — MCQs | Digital Image Processing

  69. DIP in IoT & Embedded Systems — MCQs | Digital Image Processing

  70. Ethics & Privacy in Image Processing — MCQs | Digital Image Processing

Computer Science Repeated MCQs Book Download

Exit mobile version