Posted in

Subtraction of Matrices Exercise (with Solution)

\[
\begin{array}{|c|c|}
\hline
\textbf{Matrix Subtraction Question} & \textbf{Answer} \\
\hline
\text{Subtract the following Row Matrices:} \\
A = \begin{pmatrix} 5 & 7 \end{pmatrix}, B = \begin{pmatrix} 3 & 4 \end{pmatrix} & ? \\
\hline
\text{Subtract the following Column Matrices:} \\
A = \begin{pmatrix} 9 \\ 10 \end{pmatrix}, B = \begin{pmatrix} 4 \\ 5 \end{pmatrix} & ? \\
\hline
\text{Subtract the following Square Matrices:} \\
A = \begin{pmatrix} 6 & 8 \\ 10 & 12 \end{pmatrix}, B = \begin{pmatrix} 2 & 4 \\ 6 & 8 \end{pmatrix} & ? \\
\hline
\text{Subtract the following Diagonal Matrices:} \\
A = \begin{pmatrix} 5 & 0 \\ 0 & 6 \end{pmatrix}, B = \begin{pmatrix} 3 & 0 \\ 0 & 4 \end{pmatrix} & ? \\
\hline
\text{Subtract the following Scalar Matrices:} \\
A = \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix}, B = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} & ? \\
\hline
\text{Subtract the following Identity Matrices:} \\
A = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} & ? \\
\hline
\text{Subtract the following Zero Matrices:} \\
A = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} & ? \\
\hline
\text{Subtract the following Symmetric Matrices:} \\
A = \begin{pmatrix} 4 & 3 \\ 3 & 4 \end{pmatrix}, B = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} & ? \\
\hline
\text{Subtract the following Skew-Symmetric Matrices:} \\
A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, B = \begin{pmatrix} 0 & 2 \\ -2 & 0 \end{pmatrix} & ? \\
\hline
\text{Subtract the following Matrix Equality Question:} \\
A = \begin{pmatrix} 3 & 5 \\ 7 & 9 \end{pmatrix}, B = \begin{pmatrix} 3 & 5 \\ 7 & 9 \end{pmatrix} & ? \\
\hline
\end{array}
\]

Solution:

\[
\begin{array}{|c|c|}
\hline
\textbf{Matrix Subtraction Question} & \textbf{Answer} \\
\hline
\text{Subtract the following Row Matrices:} \\
A = \begin{pmatrix} 5 & 7 \end{pmatrix}, B = \begin{pmatrix} 3 & 4 \end{pmatrix} & A – B = \begin{pmatrix} 5-3 & 7-4 \end{pmatrix} = \begin{pmatrix} 2 & 3 \end{pmatrix} \\
\hline
\text{Subtract the following Column Matrices:} \\
A = \begin{pmatrix} 9 \\ 10 \end{pmatrix}, B = \begin{pmatrix} 4 \\ 5 \end{pmatrix} & A – B = \begin{pmatrix} 9-4 \\ 10-5 \end{pmatrix} = \begin{pmatrix} 5 \\ 5 \end{pmatrix} \\
\hline
\text{Subtract the following Square Matrices:} \\
A = \begin{pmatrix} 6 & 8 \\ 10 & 12 \end{pmatrix}, B = \begin{pmatrix} 2 & 4 \\ 6 & 8 \end{pmatrix} & A – B = \begin{pmatrix} 6-2 & 8-4 \\ 10-6 & 12-8 \end{pmatrix} = \begin{pmatrix} 4 & 4 \\ 4 & 4 \end{pmatrix} \\
\hline
\text{Subtract the following Diagonal Matrices:} \\
A = \begin{pmatrix} 5 & 0 \\ 0 & 6 \end{pmatrix}, B = \begin{pmatrix} 3 & 0 \\ 0 & 4 \end{pmatrix} & A – B = \begin{pmatrix} 5-3 & 0-0 \\ 0-0 & 6-4 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \\
\hline
\text{Subtract the following Scalar Matrices:} \\
A = \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix}, B = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} & A – B = \begin{pmatrix} 5-3 & 0-0 \\ 0-0 & 5-3 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \\
\hline
\text{Subtract the following Identity Matrices:} \\
A = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} & A – B = \begin{pmatrix} 2-1 & 0-0 \\ 0-0 & 2-1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \\
\hline
\text{Subtract the following Zero Matrices:} \\
A = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} & A – B = \begin{pmatrix} 0-0 & 0-0 \\ 0-0 & 0-0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \\
\hline
\text{Subtract the following Symmetric Matrices:} \\
A = \begin{pmatrix} 4 & 3 \\ 3 & 4 \end{pmatrix}, B = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} & A – B = \begin{pmatrix} 4-1 & 3-2 \\ 3-2 & 4-1 \end{pmatrix} = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix} \\
\hline
\text{Subtract the following Skew-Symmetric Matrices:} \\
A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, B = \begin{pmatrix} 0 & 2 \\ -2 & 0 \end{pmatrix} & A – B = \begin{pmatrix} 0-0 & 1-2 \\ -1+2 & 0-0 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \\
\hline
\text{Subtract the following Matrix Equality Question:} \\
A = \begin{pmatrix} 3 & 5 \\ 7 & 9 \end{pmatrix}, B = \begin{pmatrix} 3 & 5 \\ 7 & 9 \end{pmatrix} & A – B = \begin{pmatrix} 3-3 & 5-5 \\ 7-7 & 9-9 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \\
\hline
\end{array}
\]

Exercise #2

[latex]
\[
\begin{array}{|c|c|}
\hline
\textbf{Matrix Subtraction Question} & \textbf{Answer} \\
\hline
\text{Subtract the following 2×3 Matrices:} \\
A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}, B = \begin{pmatrix} 7 & 8 & 9 \\ 10 & 11 & 12 \end{pmatrix} & ? \\
\hline
\text{Subtract the following 3×2 Matrices:} \\
A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}, B = \begin{pmatrix} 7 & 8 \\ 9 & 10 \\ 11 & 12 \end{pmatrix} & ? \\
\hline
\text{Subtract the following 4×2 Matrices:} \\
A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \\ 7 & 8 \end{pmatrix}, B = \begin{pmatrix} 9 & 10 \\ 11 & 12 \\ 13 & 14 \\ 15 & 16 \end{pmatrix} & ? \\
\hline
\text{Subtract the following 3×4 Matrices:} \\
A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{pmatrix}, B = \begin{pmatrix} 13 & 14 & 15 & 16 \\ 17 & 18 & 19 & 20 \\ 21 & 22 & 23 & 24 \end{pmatrix} & ? \\
\hline
\end{array}
\]

Solution:

[latex]
\[
\begin{array}{|c|c|}
\hline
\textbf{Matrix Subtraction Question} & \textbf{Answer} \\
\hline
\text{Subtract the following 2×3 Matrices:} \\
A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}, B = \begin{pmatrix} 7 & 8 & 9 \\ 10 & 11 & 12 \end{pmatrix} & A – B = \begin{pmatrix} 1-7 & 2-8 & 3-9 \\ 4-10 & 5-11 & 6-12 \end{pmatrix} = \begin{pmatrix} -6 & -6 & -6 \\ -6 & -6 & -6 \end{pmatrix} \\
\hline
\text{Subtract the following 3×2 Matrices:} \\
A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}, B = \begin{pmatrix} 7 & 8 \\ 9 & 10 \\ 11 & 12 \end{pmatrix} & A – B = \begin{pmatrix} 1-7 & 2-8 \\ 3-9 & 4-10 \\ 5-11 & 6-12 \end{pmatrix} = \begin{pmatrix} -6 & -6 \\ -6 & -6 \\ -6 & -6 \end{pmatrix} \\
\hline
\text{Subtract the following 4×2 Matrices:} \\
A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \\ 7 & 8 \end{pmatrix}, B = \begin{pmatrix} 9 & 10 \\ 11 & 12 \\ 13 & 14 \\ 15 & 16 \end{pmatrix} & A – B = \begin{pmatrix} 1-9 & 2-10 \\ 3-11 & 4-12 \\ 5-13 & 6-14 \\ 7-15 & 8-16 \end{pmatrix} = \begin{pmatrix} -8 & -8 \\ -8 & -8 \\ -8 & -8 \\ -8 & -8 \end{pmatrix} \\
\hline
\text{Subtract the following 3×4 Matrices:} \\
A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{pmatrix}, B = \begin{pmatrix} 13 & 14 & 15 & 16 \\ 17 & 18 & 19 & 20 \\ 21 & 22 & 23 & 24 \end{pmatrix} & A – B = \begin{pmatrix} 1-13 & 2-14 & 3-15 & 4-16 \\ 5-17 & 6-18 & 7-19 & 8-20 \\ 9-21 & 10-22 & 11-23 & 12-24 \end{pmatrix} = \begin{pmatrix} -12 & -12 & -12 & -12 \\ -12 & -12 & -12 & -12 \\ -12 & -12 & -12 & -12 \end{pmatrix} \\
\hline
\end{array}
\]

 CEO @ T4Tutorials.com
I welcome to all of you if you want to discuss about any topic. Researchers, teachers and students are allowed to use the content for non commercial offline purpose. Further, You must use the reference of the website, if you want to use the partial content for research purpose.

Leave a Reply

Contents Copyrights Reserved By T4Tutorials