Posted in

Multiplication of Matrices Exercise with Solution

[latex]
\[
\textbf{Exercise: Multiplication of Matrices}
\]

\[
\textbf{Q1: Multiply the Square Matrices A and B, where:}
\]
\[
A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 0 \\ 1 & 3 \end{pmatrix}
\] Solution

\[
\textbf{Q2: Multiply the Diagonal Matrices A and B, where:}
\]
\[
A = \begin{pmatrix} 3 & 0 \\ 0 & 5 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 0 \\ 0 & 4 \end{pmatrix}
\] Solution

\[
\textbf{Q3: Multiply the Scalar Matrices A and B, where:}
\]
\[
A = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}
\] Solution

\[
\textbf{Q4: Multiply the Identity Matrices A and B, where:}
\]
\[
A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}
\] Solution

\[
\textbf{Q5: Multiply the Zero Matrices A and B, where:}
\]

\[
A = \begin{pmatrix} 2 & 1 \\ 1 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}
\]

\[
A = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}
\]  Solution

\[
\textbf{Q6: Multiply the Symmetric Matrix A by the Skew-Symmetric Matrix B, where:}
\]

\[
A = \begin{pmatrix} 2 & 1 \\ 1 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}
\] Solution

\[
\textbf{Q7: Multiply Matrix A (2×3) by Matrix B (3×2), where:}
\]
\[
A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}, \quad B = \begin{pmatrix} 7 & 8 \\ 9 & 10 \\ 11 & 12 \end{pmatrix}
\] Solution

\[
\textbf{Q8: Multiply Matrix A (3×2) by Matrix B (2×4), where:}
\]
\[
A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}, \quad B = \begin{pmatrix} 7 & 8 & 9 & 10 \\ 11 & 12 & 13 & 14 \end{pmatrix}
\] Solution

\[
\textbf{Q9: Multiply Matrix A (1×3) by Matrix B (3×1), where:}
\]
\[
A = \begin{pmatrix} 2 & 4 & 6 \end{pmatrix}, \quad B = \begin{pmatrix} 1 \\ 3 \\ 5 \end{pmatrix}
\] Solution

\[
\textbf{Q10: Multiply Matrix A (3×3) by Matrix B (3×2), where:}
\]
\[
A = \begin{pmatrix} 1 & 0 & 2 \\ -1 & 3 & 1 \\ 2 & 2 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 3 & 1 \\ 2 & 4 \\ 1 & 0 \end{pmatrix}
\] Solution

 CEO @ T4Tutorials.com
I welcome to all of you if you want to discuss about any topic. Researchers, teachers and students are allowed to use the content for non commercial offline purpose. Further, You must use the reference of the website, if you want to use the partial content for research purpose.

Leave a Reply

Contents Copyrights Reserved By T4Tutorials