Posted in

Matrix Dimensions Exercise (with Solution)

Mention the dimension for each of the following matrix.

[latex]
\[
\begin{array}{|c|c|}
\hline
\textbf{Question} & \textbf{Dimensions: ?} \\
\hline
A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} & ? \\
\hline
B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{pmatrix} & ? \\
\hline
C = \begin{pmatrix} c_{11} & c_{12} & c_{13} \\ c_{14} & c_{15} & c_{16} \end{pmatrix} & ? \\
\hline
D = \begin{pmatrix} d_{11} \\ d_{21} \\ d_{31} \end{pmatrix} & ? \\
\hline
E = \begin{pmatrix} e_{11} & e_{12} & e_{13} & e_{14} \\ e_{21} & e_{22} & e_{23} & e_{24} \\ e_{31} & e_{32} & e_{33} & e_{34} \end{pmatrix} & ? \\
\hline
F = \begin{pmatrix} f_{11} \end{pmatrix} & ? \\
\hline
\end{array}
\]

Solution:

[latex]
\[
\begin{array}{|c|c|}
\hline
\textbf{Question} & \textbf{Explanation / Answer} \\
\hline
A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} & \text{Matrix \( A \) has dimensions \( 3 \times 3 \) (3 rows and 3 columns).} \\
\hline
B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{pmatrix} & \text{Matrix \( B \) has dimensions \( 3 \times 2 \) (3 rows and 2 columns).} \\
\hline
C = \begin{pmatrix} c_{11} & c_{12} & c_{13} \\ c_{14} & c_{15} & c_{16} \end{pmatrix} & \text{Matrix \( C \) has dimensions \( 2 \times 6 \) (2 rows and 6 columns).} \\
\hline
D = \begin{pmatrix} d_{11} \\ d_{21} \\ d_{31} \end{pmatrix} & \text{Matrix \( D \) has dimensions \( 3 \times 1 \) (3 rows and 1 column).} \\
\hline
E = \begin{pmatrix} e_{11} & e_{12} & e_{13} & e_{14} \\ e_{21} & e_{22} & e_{23} & e_{24} \\ e_{31} & e_{32} & e_{33} & e_{34} \end{pmatrix} & \text{Matrix \( E \) has dimensions \( 3 \times 4 \) (3 rows and 4 columns).} \\
\hline
F = \begin{pmatrix} f_{11} \end{pmatrix} & \text{Matrix \( F \) has dimensions \( 1 \times 1 \) (1 row and 1 column, i.e., a scalar).} \\
\hline
\end{array}
\]

 CEO @ T4Tutorials.com
I welcome to all of you if you want to discuss about any topic. Researchers, teachers and students are allowed to use the content for non commercial offline purpose. Further, You must use the reference of the website, if you want to use the partial content for research purpose.

Leave a Reply

Contents Copyrights Reserved By T4Tutorials