Posted in

Cofactor Expansion Exercise

Question #1

[latex]

\[
\text{Given the matrix } A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}, \text{ compute the determinant using cofactor expansion.}
\]

Question #2

\[
\text{Given the matrix } B = \begin{pmatrix} 2 & 3 & 1 \\ 4 & 0 & 5 \\ 7 & 6 & 8 \end{pmatrix}, \text{ compute the determinant using cofactor expansion.}
\]

Question #3

 

\[
\text{Given the matrix } C = \begin{pmatrix} 3 & 2 & 4 \\ 1 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}, \text{ compute the determinant using cofactor expansion.}
\]

Question #4

\[
\text{Given the matrix } D = \begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{pmatrix}, \text{ compute the determinant using cofactor expansion.}
\]


Solution of Exercise

Question #1

\[
\text{Given the matrix } A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}, \text{ compute the determinant using cofactor expansion.}
\]

Solution:

\[
\text{We will expand along the first row. The determinant is:}
\]

\[
\text{det}(A) = 1 \cdot \begin{vmatrix} 5 & 6 \\ 8 & 9 \end{vmatrix} – 2 \cdot \begin{vmatrix} 4 & 6 \\ 7 & 9 \end{vmatrix} + 3 \cdot \begin{vmatrix} 4 & 5 \\ 7 & 8 \end{vmatrix}
\]

\[
\text{Now, calculate the 2×2 determinants:}
\]

\[
\begin{vmatrix} 5 & 6 \\ 8 & 9 \end{vmatrix} = (5 \times 9) – (6 \times 8) = 45 – 48 = -3
\]
\[
\begin{vmatrix} 4 & 6 \\ 7 & 9 \end{vmatrix} = (4 \times 9) – (6 \times 7) = 36 – 42 = -6
\]
\[
\begin{vmatrix} 4 & 5 \\ 7 & 8 \end{vmatrix} = (4 \times 8) – (5 \times 7) = 32 – 35 = -3
\]

\[
\text{Substitute these values back into the cofactor expansion:}
\]

\[
\text{det}(A) = 1 \cdot (-3) – 2 \cdot (-6) + 3 \cdot (-3)
\]

\[
\text{det}(A) = -3 + 12 – 9
\]

\[
\text{det}(A) = 0
\]

\[
\textbf{Answer: The determinant of matrix } A \text{ is } 0.
\]

Question #2

\[
\text{Given the matrix } B = \begin{pmatrix} 2 & 3 & 1 \\ 4 & 0 & 5 \\ 7 & 6 & 8 \end{pmatrix}, \text{ compute the determinant using cofactor expansion.}
\]

Solution:

\[
\text{We will expand along the first row. The determinant is:}
\]

\[
\text{det}(B) = 2 \cdot \begin{vmatrix} 0 & 5 \\ 6 & 8 \end{vmatrix} – 3 \cdot \begin{vmatrix} 4 & 5 \\ 7 & 8 \end{vmatrix} + 1 \cdot \begin{vmatrix} 4 & 0 \\ 7 & 6 \end{vmatrix}
\]

\[
\text{Now, calculate the 2×2 determinants:}
\]

\[
\begin{vmatrix} 0 & 5 \\ 6 & 8 \end{vmatrix} = (0 \times 8) – (5 \times 6) = 0 – 30 = -30
\]
\[
\begin{vmatrix} 4 & 5 \\ 7 & 8 \end{vmatrix} = (4 \times 8) – (5 \times 7) = 32 – 35 = -3
\]
\[
\begin{vmatrix} 4 & 0 \\ 7 & 6 \end{vmatrix} = (4 \times 6) – (0 \times 7) = 24 – 0 = 24
\]

\[
\text{Substitute these values back into the cofactor expansion:}
\]

\[
\text{det}(B) = 2 \cdot (-30) – 3 \cdot (-3) + 1 \cdot 24
\]

\[
\text{det}(B) = -60 + 9 + 24
\]

\[
\text{det}(B) = -27
\]

\[
\textbf{Answer: The determinant of matrix } B \text{ is } -27.
\]

 

 

 

Question #3

 

\[
\text{Given the matrix } C = \begin{pmatrix} 3 & 2 & 4 \\ 1 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}, \text{ compute the determinant using cofactor expansion.}
\]

Solution:

\[
\text{We will expand along the first row. The determinant is:}
\]

\[
\text{det}(C) = 3 \cdot \begin{vmatrix} 5 & 6 \\ 8 & 9 \end{vmatrix} – 2 \cdot \begin{vmatrix} 1 & 6 \\ 7 & 9 \end{vmatrix} + 4 \cdot \begin{vmatrix} 1 & 5 \\ 7 & 8 \end{vmatrix}
\]

\[
\text{Now, calculate the 2×2 determinants:}
\]

\[
\begin{vmatrix} 5 & 6 \\ 8 & 9 \end{vmatrix} = (5 \times 9) – (6 \times 8) = 45 – 48 = -3
\]
\[
\begin{vmatrix} 1 & 6 \\ 7 & 9 \end{vmatrix} = (1 \times 9) – (6 \times 7) = 9 – 42 = -33
\]
\[
\begin{vmatrix} 1 & 5 \\ 7 & 8 \end{vmatrix} = (1 \times 8) – (5 \times 7) = 8 – 35 = -27
\]

\[
\text{Substitute these values back into the cofactor expansion:}
\]

\[
\text{det}(C) = 3 \cdot (-3) – 2 \cdot (-33) + 4 \cdot (-27)
\]

\[
\text{det}(C) = -9 + 66 – 108
\]

\[
\text{det}(C) = -51
\]

\[
\textbf{Answer: The determinant of matrix } C \text{ is } -51.
\]

 

 

 

Question #4

\[
\text{Given the matrix } D = \begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{pmatrix}, \text{ compute the determinant using cofactor expansion.}
\]

Solution:

\[
\text{We will expand along the first row. The determinant is:}
\]

\[
\text{det}(D) = 1 \cdot \begin{vmatrix} 5 & 8 \\ 6 & 9 \end{vmatrix} – 4 \cdot \begin{vmatrix} 2 & 8 \\ 3 & 9 \end{vmatrix} + 7 \cdot \begin{vmatrix} 2 & 5 \\ 3 & 6 \end{vmatrix}
\]

\[
\text{Now, calculate the 2×2 determinants:}
\]

\[
\begin{vmatrix} 5 & 8 \\ 6 & 9 \end{vmatrix} = (5 \times 9) – (8 \times 6) = 45 – 48 = -3
\]
\[
\begin{vmatrix} 2 & 8 \\ 3 & 9 \end{vmatrix} = (2 \times 9) – (8 \times 3) = 18 – 24 = -6
\]
\[
\begin{vmatrix} 2 & 5 \\ 3 & 6 \end{vmatrix} = (2 \times 6) – (5 \times 3) = 12 – 15 = -3
\]

\[
\text{Substitute these values back into the cofactor expansion:}
\]

\[
\text{det}(D) = 1 \cdot (-3) – 4 \cdot (-6) + 7 \cdot (-3)
\]

\[
\text{det}(D) = -3 + 24 – 21
\]

\[
\text{det}(D) = 0
\]

\[
\textbf{Answer: The determinant of matrix } D \text{ is } 0.
\]

 CEO @ T4Tutorials.com
I welcome to all of you if you want to discuss about any topic. Researchers, teachers and students are allowed to use the content for non commercial offline purpose. Further, You must use the reference of the website, if you want to use the partial content for research purpose.

Leave a Reply

Contents Copyrights Reserved By T4Tutorials