Posted in

Scalar Multiplication of Matrices Exercise with solution

\[
\textbf{Q1: Multiply the Scalar 3 by the Matrix A, where:}
\]
\[
A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}
\]
\[
\textbf{Solution:}
\]
\[
3 \cdot A = 3 \cdot \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}
\]
\[
= \begin{pmatrix} 3 \cdot 1 & 3 \cdot 2 \\ 3 \cdot 3 & 3 \cdot 4 \end{pmatrix}
\]
\[
= \begin{pmatrix} 3 & 6 \\ 9 & 12 \end{pmatrix}
\]

\[
\textbf{Q2: Multiply the Scalar -2 by the Matrix B, where:}
\]
\[
B = \begin{pmatrix} 5 & -3 \\ 0 & 2 \end{pmatrix}
\]
\[
\textbf{Solution:}
\]
\[
-2 \cdot B = -2 \cdot \begin{pmatrix} 5 & -3 \\ 0 & 2 \end{pmatrix}
\]
\[
= \begin{pmatrix} -2 \cdot 5 & -2 \cdot (-3) \\ -2 \cdot 0 & -2 \cdot 2 \end{pmatrix}
\]
\[
= \begin{pmatrix} -10 & 6 \\ 0 & -4 \end{pmatrix}
\]

\[
\textbf{Q3: Multiply the Scalar 0.5 by the Matrix C, where:}
\]
\[
C = \begin{pmatrix} 8 & 6 \\ 4 & 2 \end{pmatrix}
\]
\[
\textbf{Solution:}
\]
\[
0.5 \cdot C = 0.5 \cdot \begin{pmatrix} 8 & 6 \\ 4 & 2 \end{pmatrix}
\]
\[
= \begin{pmatrix} 0.5 \cdot 8 & 0.5 \cdot 6 \\ 0.5 \cdot 4 & 0.5 \cdot 2 \end{pmatrix}
\]
\[
= \begin{pmatrix} 4 & 3 \\ 2 & 1 \end{pmatrix}
\]

\[
\textbf{Q4: Multiply the Scalar -1 by the Matrix D, where:}
\]
\[
D = \begin{pmatrix} 7 & 2 \\ -5 & 0 \end{pmatrix}
\]
\[
\textbf{Solution:}
\]
\[
-1 \cdot D = -1 \cdot \begin{pmatrix} 7 & 2 \\ -5 & 0 \end{pmatrix}
\]
\[
= \begin{pmatrix} -1 \cdot 7 & -1 \cdot 2 \\ -1 \cdot (-5) & -1 \cdot 0 \end{pmatrix}
\]
\[
= \begin{pmatrix} -7 & -2 \\ 5 & 0 \end{pmatrix}
\]

\[
\textbf{Q5: Multiply the Scalar 4 by the Zero Matrix E, where:}
\]
\[
E = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}
\]
\[
\textbf{Solution:}
\]
\[
4 \cdot E = 4 \cdot \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}
\]
\[
= \begin{pmatrix} 4 \cdot 0 & 4 \cdot 0 \\ 4 \cdot 0 & 4 \cdot 0 \end{pmatrix}
\]
\[
= \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}
\]

\[
\textbf{Q6: Multiply the Scalar 2 by the Identity Matrix F, where:}
\]
\[
F = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}
\]
\[
\textbf{Solution:}
\]
\[
2 \cdot F = 2 \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}
\]
\[
= \begin{pmatrix} 2 \cdot 1 & 2 \cdot 0 \\ 2 \cdot 0 & 2 \cdot 1 \end{pmatrix}
\]
\[
= \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}
\]

 CEO @ T4Tutorials.com
I welcome to all of you if you want to discuss about any topic. Researchers, teachers and students are allowed to use the content for non commercial offline purpose. Further, You must use the reference of the website, if you want to use the partial content for research purpose.

Leave a Reply

Contents Copyrights Reserved By T4Tutorials