1. Kinematics is concerned with:
(A) Description of motion without forces
(B) Forces that cause motion
(C) Muscle activation
(D) Nervous system activity
2. Kinetics deals with:
(A) Describing displacement
(B) Forces that cause motion
(C) Joint sounds
(D) Angles only
3. Displacement is classified as a:
(A) Scalar
(B) Vector
(C) Tensor
(D) Constant
4. Distance is considered a:
(A) Vector
(B) Scalar
(C) Force
(D) Momentum
5. Angular displacement is measured in:
(A) Radians or degrees
(B) Newtons
(C) Joules
(D) Watts
6. Linear velocity is:
(A) Rate of change of displacement
(B) Distance per unit time
(C) Torque per second
(D) Pressure per unit area
7. Angular velocity is expressed as:
(A) Radians per second
(B) Joules
(C) Newtons
(D) Meters
8. Acceleration is:
(A) Change in velocity per unit time
(B) Force per unit mass
(C) Work per second
(D) Torque per radian
9. Newton’s first law relates to:
(A) Inertia
(B) Acceleration
(C) Action-reaction
(D) Power
10. Newton’s second law formula is:
(A) F = ma
(B) W = Fd
(C) P = W/t
(D) T = F × r
11. Newton’s third law states:
(A) For every action, there is an equal and opposite reaction
(B) F = ma
(C) Energy is conserved
(D) Momentum is zero
12. Torque is calculated as:
(A) Force × moment arm
(B) Mass × velocity
(C) Force × distance traveled
(D) Energy × time
13. Momentum is:
(A) Mass × velocity
(B) Force × acceleration
(C) Torque × distance
(D) Power × work
14. Impulse equals:
(A) Force × time
(B) Mass × velocity
(C) Power × time
(D) Torque × angle
15. Work is calculated as:
(A) Force × distance
(B) Force × acceleration
(C) Mass × velocity
(D) Torque × angle
16. Power is defined as:
(A) Work per unit time
(B) Force per unit area
(C) Mass per unit volume
(D) Torque per second
17. Ground reaction force is an example of:
(A) Kinetics
(B) Kinematics
(C) Anatomy
(D) Physiology
18. A force plate is used to measure:
(A) Ground reaction forces
(B) Muscle strength
(C) Lung volumes
(D) Blood pressure
19. A displacement-time graph shows:
(A) Position over time
(B) Force over time
(C) Torque over angle
(D) Power over distance
20. A velocity-time graph slope indicates:
(A) Acceleration
(B) Momentum
(C) Force
(D) Distance
21. The slope of a displacement-time graph gives:
(A) Velocity
(B) Acceleration
(C) Power
(D) Force
22. The slope of a velocity-time graph gives:
(A) Acceleration
(B) Force
(C) Momentum
(D) Torque
23. Stress is defined as:
(A) Force per unit area
(B) Change in length per unit length
(C) Mass per velocity
(D) Torque per time
24. Strain is:
(A) Deformation per unit length
(B) Mass × velocity
(C) Force × distance
(D) Torque ÷ time
25. Inertia is:
(A) Resistance to change in motion
(B) Change in displacement
(C) Acceleration per mass
(D) Work per distance
26. The center of mass is:
(A) Point where body mass is balanced
(B) The midpoint of a bone
(C) Joint capsule center
(D) Force plate reading
27. Friction always acts:
(A) Opposite to motion or attempted motion
(B) Along the motion
(C) Vertically downward
(D) Toward center of gravity
28. Linear motion occurs when:
(A) All body parts move in the same direction and distance
(B) Body rotates about an axis
(C) Only joints move
(D) Muscles contract eccentrically
29. Angular motion occurs when:
(A) A body moves about a fixed axis
(B) A body moves linearly
(C) A muscle contracts isometrically
(D) Energy dissipates
30. Combined motion is:
(A) Linear + angular together
(B) Isometric contraction only
(C) Torque without force
(D) Pure rotation
31. A first-class lever example is:
(A) Neck during nodding
(B) Biceps curl
(C) Heel raise
(D) Knee extension
32. A second-class lever example is:
(A) Heel raise
(B) Biceps curl
(C) Shoulder flexion
(D) Hip abduction
33. The most common lever type in the body is:
(A) Third class
(B) First class
(C) Second class
(D) None
34. Mechanical advantage is:
(A) Output force ÷ input force
(B) Mass ÷ velocity
(C) Work ÷ time
(D) Torque ÷ distance
35. A longer lever arm increases:
(A) Torque production
(B) Stability only
(C) Velocity only
(D) Power only
36. Buoyancy force acts:
(A) Upward opposite gravity
(B) Downward with gravity
(C) Horizontally
(D) Randomly
37. Drag in swimming is caused by:
(A) Fluid resistance
(B) Gravity
(C) Muscle contraction
(D) Torque
38. Lift force in fluid mechanics is generated by:
(A) Pressure differences
(B) Gravity
(C) Friction
(D) Mass
39. Projectile motion path is:
(A) Parabolic
(B) Circular
(C) Linear
(D) Random
40. Angular momentum depends on:
(A) Mass, velocity, and radius
(B) Force only
(C) Torque only
(D) Work only
41. Conservation of momentum principle applies when:
(A) No external forces act
(B) External torque acts
(C) Muscle contraction occurs
(D) Gravity changes
42. Elastic collision means:
(A) No loss of kinetic energy
(B) Total loss of energy
(C) Only heat is produced
(D) Momentum is lost
43. Inelastic collision means:
(A) Loss of kinetic energy
(B) Perfect energy conservation
(C) No force involved
(D) Only angular momentum conserved
44. A free-body diagram helps in:
(A) Analyzing forces acting on a body
(B) Measuring velocity
(C) Tracking blood pressure
(D) Recording EMG
45. A gait analysis includes measurement of:
(A) Kinematics and kinetics of walking
(B) Lung volumes
(C) Blood sugar
(D) Heart rate only
46. Linear acceleration unit is:
(A) m/s²
(B) N·m
(C) Watt
(D) Joule
47. Angular acceleration is measured in:
(A) rad/s²
(B) m/s²
(C) Joule
(D) Watt
48. Power in rotational motion is calculated as:
(A) Torque × angular velocity
(B) Force × time
(C) Mass × velocity
(D) Torque ÷ distance
49. The center of pressure is:
(A) Point of application of ground reaction force
(B) Muscle insertion
(C) Bone midline
(D) Ligament origin
50. The study of kinetics and kinematics in physiotherapy is essential for:
(A) Gait, posture, and movement analysis
(B) Measuring blood pressure
(C) Analyzing lung volumes
(D) Studying hormones
Kinetics and Kinematics – MCQs
-
Instrumentation in Motion Analysis (EMG, Force Plates, Motion Capture) – MCQs
-
Applied Kinetics and Kinematics in Rehabilitation & Sports – MCQs