Kinetics and Kinematics – MCQs 50 Score: 0 Attempted: 0/50 Subscribe 1. Kinematics is concerned with: (A) Description of motion without forces (B) Forces that cause motion (C) Muscle activation (D) Nervous system activity 2. Kinetics deals with: (A) Describing displacement (B) Forces that cause motion (C) Joint sounds (D) Angles only 3. Displacement is classified as a: (A) Scalar (B) Vector (C) Tensor (D) Constant 4. Distance is considered a: (A) Vector (B) Scalar (C) Force (D) Momentum 5. Angular displacement is measured in: (A) Radians or degrees (B) Newtons (C) Joules (D) Watts 6. Linear velocity is: (A) Rate of change of displacement (B) Distance per unit time (C) Torque per second (D) Pressure per unit area 7. Angular velocity is expressed as: (A) Radians per second (B) Joules (C) Newtons (D) Meters 8. Acceleration is: (A) Change in velocity per unit time (B) Force per unit mass (C) Work per second (D) Torque per radian 9. Newton’s first law relates to: (A) Inertia (B) Acceleration (C) Action-reaction (D) Power 10. Newton’s second law formula is: (A) F = ma (B) W = Fd (C) P = W/t (D) T = F × r 11. Newton’s third law states: (A) For every action, there is an equal and opposite reaction (B) F = ma (C) Energy is conserved (D) Momentum is zero 12. Torque is calculated as: (A) Force × moment arm (B) Mass × velocity (C) Force × distance traveled (D) Energy × time 13. Momentum is: (A) Mass × velocity (B) Force × acceleration (C) Torque × distance (D) Power × work 14. Impulse equals: (A) Force × time (B) Mass × velocity (C) Power × time (D) Torque × angle 15. Work is calculated as: (A) Force × distance (B) Force × acceleration (C) Mass × velocity (D) Torque × angle 16. Power is defined as: (A) Work per unit time (B) Force per unit area (C) Mass per unit volume (D) Torque per second 17. Ground reaction force is an example of: (A) Kinetics (B) Kinematics (C) Anatomy (D) Physiology 18. A force plate is used to measure: (A) Ground reaction forces (B) Muscle strength (C) Lung volumes (D) Blood pressure 19. A displacement-time graph shows: (A) Position over time (B) Force over time (C) Torque over angle (D) Power over distance 20. A velocity-time graph slope indicates: (A) Acceleration (B) Momentum (C) Force (D) Distance 21. The slope of a displacement-time graph gives: (A) Velocity (B) Acceleration (C) Power (D) Force 22. The slope of a velocity-time graph gives: (A) Acceleration (B) Force (C) Momentum (D) Torque 23. Stress is defined as: (A) Force per unit area (B) Change in length per unit length (C) Mass per velocity (D) Torque per time 24. Strain is: (A) Deformation per unit length (B) Mass × velocity (C) Force × distance (D) Torque ÷ time 25. Inertia is: (A) Resistance to change in motion (B) Change in displacement (C) Acceleration per mass (D) Work per distance 26. The center of mass is: (A) Point where body mass is balanced (B) The midpoint of a bone (C) Joint capsule center (D) Force plate reading 27. Friction always acts: (A) Opposite to motion or attempted motion (B) Along the motion (C) Vertically downward (D) Toward center of gravity 28. Linear motion occurs when: (A) All body parts move in the same direction and distance (B) Body rotates about an axis (C) Only joints move (D) Muscles contract eccentrically 29. Angular motion occurs when: (A) A body moves about a fixed axis (B) A body moves linearly (C) A muscle contracts isometrically (D) Energy dissipates 30. Combined motion is: (A) Linear + angular together (B) Isometric contraction only (C) Torque without force (D) Pure rotation 31. A first-class lever example is: (A) Neck during nodding (B) Biceps curl (C) Heel raise (D) Knee extension 32. A second-class lever example is: (A) Heel raise (B) Biceps curl (C) Shoulder flexion (D) Hip abduction 33. The most common lever type in the body is: (A) Third class (B) First class (C) Second class (D) None 34. Mechanical advantage is: (A) Output force ÷ input force (B) Mass ÷ velocity (C) Work ÷ time (D) Torque ÷ distance 35. A longer lever arm increases: (A) Torque production (B) Stability only (C) Velocity only (D) Power only 36. Buoyancy force acts: (A) Upward opposite gravity (B) Downward with gravity (C) Horizontally (D) Randomly 37. Drag in swimming is caused by: (A) Fluid resistance (B) Gravity (C) Muscle contraction (D) Torque 38. Lift force in fluid mechanics is generated by: (A) Pressure differences (B) Gravity (C) Friction (D) Mass 39. Projectile motion path is: (A) Parabolic (B) Circular (C) Linear (D) Random 40. Angular momentum depends on: (A) Mass, velocity, and radius (B) Force only (C) Torque only (D) Work only 41. Conservation of momentum principle applies when: (A) No external forces act (B) External torque acts (C) Muscle contraction occurs (D) Gravity changes 42. Elastic collision means: (A) No loss of kinetic energy (B) Total loss of energy (C) Only heat is produced (D) Momentum is lost 43. Inelastic collision means: (A) Loss of kinetic energy (B) Perfect energy conservation (C) No force involved (D) Only angular momentum conserved 44. A free-body diagram helps in: (A) Analyzing forces acting on a body (B) Measuring velocity (C) Tracking blood pressure (D) Recording EMG 45. A gait analysis includes measurement of: (A) Kinematics and kinetics of walking (B) Lung volumes (C) Blood sugar (D) Heart rate only 46. Linear acceleration unit is: (A) m/s² (B) N·m (C) Watt (D) Joule 47. Angular acceleration is measured in: (A) rad/s² (B) m/s² (C) Joule (D) Watt 48. Power in rotational motion is calculated as: (A) Torque × angular velocity (B) Force × time (C) Mass × velocity (D) Torque ÷ distance 49. The center of pressure is: (A) Point of application of ground reaction force (B) Muscle insertion (C) Bone midline (D) Ligament origin 50. The study of kinetics and kinematics in physiotherapy is essential for: (A) Gait, posture, and movement analysis (B) Measuring blood pressure (C) Analyzing lung volumes (D) Studying hormones Kinetics and Kinematics – MCQs Introduction to Kinematics – MCQs Types of Motion (Linear, Angular, General) – MCQs Kinematic Chains (Open vs. Closed) – MCQs Planes and Axes of Motion – MCQs Range of Motion (ROM) – MCQs Introduction to Kinetics – MCQs Newton’s Laws of Motion – MCQs Levers in the Human Body – MCQs Center of Gravity & Stability – MCQs Joint Mechanics / Arthrokinematics – MCQs Work, Power, and Energy in Human Movement – MCQs Muscle Mechanics (Length-Tension, Force-Velocity) – MCQs Gait Analysis (Normal and Pathological) – MCQs Posture and Postural Control – MCQs Balance and Equilibrium – MCQs Spine and Trunk Biomechanics – MCQs Upper Limb Kinetics & Kinematics – MCQs Lower Limb Kinetics & Kinematics – MCQs Instrumentation in Motion Analysis (EMG, Force Plates, Motion Capture) – MCQs Applied Kinetics and Kinematics in Rehabilitation & Sports – MCQs Related Posts:Applied Kinetics and Kinematics in Rehabilitation & Sports – MCQsRelationship with kinetics and kinematics – MCQsLower Limb Kinetics & Kinematics – MCQsJoint Classifications and Kinematics – MCQsKinematics and Dynamics of Robots — MCQs – EEIntroduction to Kinematics – MCQs