Posted in

Addition of Matrices Exercise (with Solution)

Addition of Matrices
Addition of Matrices

 

\[
\textbf{Matrix Addition Questions}
\]

\[
\textbf{Q1: Add the following Row Matrices:}
\]
\[
A = \begin{pmatrix} 1 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} 3 & 4 \end{pmatrix}
\]

\[
\textbf{Q2: Add the following Column Matrices:}
\]
\[
A = \begin{pmatrix} 5 \\ 6 \end{pmatrix}, \quad B = \begin{pmatrix} 7 \\ 8 \end{pmatrix}
\]

\[
\textbf{Q3: Add the following Square Matrices:}
\]
\[
A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, \quad B = \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix}
\]

\[
\textbf{Q4: Add the following Diagonal Matrices:}
\]
\[
A = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} 4 & 0 \\ 0 & 5 \end{pmatrix}
\]

\[
\textbf{Q5: Add the following Scalar Matrices:}
\]
\[
A = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix}
\]

\[
\textbf{Q6: Add the following Identity Matrices:}
\]
\[
A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}
\]

\[
\textbf{Q7: Add the following Zero Matrices:}
\]
\[
A = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}
\]

\[
\textbf{Q8: Add the following Symmetric Matrices:}
\]
\[
A = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} 4 & 5 \\ 5 & 6 \end{pmatrix}
\]

\[
\textbf{Q9: Add the following Skew-Symmetric Matrices:}
\]
\[
A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 2 \\ -2 & 0 \end{pmatrix}
\]

\[
\textbf{Q10: Add the following Matrix Equality Question:}
\]
\[
A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}
\]


Solution

\[
\textbf{Q1: Add the following Row Matrices:}
\]
\[
A = \begin{pmatrix} 1 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} 3 & 4 \end{pmatrix}
\]
\[
\textbf{Solution:}
\]
\[
A + B = \begin{pmatrix} 1+3 & 2+4 \end{pmatrix} = \begin{pmatrix} 4 & 6 \end{pmatrix}
\]

\[
\textbf{Q2: Add the following Column Matrices:}
\]
\[
A = \begin{pmatrix} 5 \\ 6 \end{pmatrix}, \quad B = \begin{pmatrix} 7 \\ 8 \end{pmatrix}
\]
\[
\textbf{Solution:}
\]
\[
A + B = \begin{pmatrix} 5+7 \\ 6+8 \end{pmatrix} = \begin{pmatrix} 12 \\ 14 \end{pmatrix}
\]

\[
\textbf{Q3: Add the following Square Matrices:}
\]
\[
A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, \quad B = \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix}
\]
\[
\textbf{Solution:}
\]
\[
A + B = \begin{pmatrix} 1+5 & 2+6 \\ 3+7 & 4+8 \end{pmatrix} = \begin{pmatrix} 6 & 8 \\ 10 & 12 \end{pmatrix}
\]

\[
\textbf{Q4: Add the following Diagonal Matrices:}
\]
\[
A = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} 4 & 0 \\ 0 & 5 \end{pmatrix}
\]
\[
\textbf{Solution:}
\]
\[
A + B = \begin{pmatrix} 2+4 & 0+0 \\ 0+0 & 3+5 \end{pmatrix} = \begin{pmatrix} 6 & 0 \\ 0 & 8 \end{pmatrix}
\]

\[
\textbf{Q5: Add the following Scalar Matrices:}
\]
\[
A = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix}
\]
\[
\textbf{Solution:}
\]
\[
A + B = \begin{pmatrix} 3+4 & 0+0 \\ 0+0 & 3+4 \end{pmatrix} = \begin{pmatrix} 7 & 0 \\ 0 & 7 \end{pmatrix}
\]

\[
\textbf{Q6: Add the following Identity Matrices:}
\]
\[
A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}
\]
\[
\textbf{Solution:}
\]
\[
A + B = \begin{pmatrix} 1+1 & 0+0 \\ 0+0 & 1+1 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}
\]

\[
\textbf{Q7: Add the following Zero Matrices:}
\]
\[
A = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}
\]
\[
\textbf{Solution:}
\]
\[
A + B = \begin{pmatrix} 0+0 & 0+0 \\ 0+0 & 0+0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}
\]

\[
\textbf{Q8: Add the following Symmetric Matrices:}
\]
\[
A = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} 4 & 5 \\ 5 & 6 \end{pmatrix}
\]
\[
\textbf{Solution:}
\]
\[
A + B = \begin{pmatrix} 1+4 & 2+5 \\ 2+5 & 3+6 \end{pmatrix} = \begin{pmatrix} 5 & 7 \\ 7 & 9 \end{pmatrix}
\]

\[
\textbf{Q9: Add the following Skew-Symmetric Matrices:}
\]
\[
A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 2 \\ -2 & 0 \end{pmatrix}
\]
\[
\textbf{Solution:}
\]
\[
A + B = \begin{pmatrix} 0+0 & 1+2 \\ -1-2 & 0+0 \end{pmatrix} = \begin{pmatrix} 0 & 3 \\ -3 & 0 \end{pmatrix}
\]

\[
\textbf{Q10: Add the following Matrix Equality Question:}
\]
\[
A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}
\]
\[
\textbf{Solution:}
\]
\[
A + B = \begin{pmatrix} 1+1 & 2+2 \\ 3+3 & 4+4 \end{pmatrix} = \begin{pmatrix} 2 & 4 \\ 6 & 8 \end{pmatrix}
\]

[latex]
\[
\textbf{Matrix Addition Questions and Answers}
\]


matrix addition math
matrix addition math

Solution:

Q1: Add the following 2×3 Matrices:

A = \(\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}\), B = \(\begin{pmatrix} 7 & 8 & 9 \\ 10 & 11 & 12 \end{pmatrix}\)

Solution:

A + B = \(\begin{pmatrix} 1+7 & 2+8 & 3+9 \\ 4+10 & 5+11 & 6+12 \end{pmatrix}\)

Result = \(\begin{pmatrix} 8 & 10 & 12 \\ 14 & 16 & 18 \end{pmatrix}\)

Q2: Add the following 3×2 Matrices:

A = \(\begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}\), B = \(\begin{pmatrix} 7 & 8 \\ 9 & 10 \\ 11 & 12 \end{pmatrix}\)

Solution:

A + B = \(\begin{pmatrix} 1+7 & 2+8 \\ 3+9 & 4+10 \\ 5+11 & 6+12 \end{pmatrix}\)

Result = \(\begin{pmatrix} 8 & 10 \\ 12 & 14 \\ 16 & 18 \end{pmatrix}\)

Q3: Add the following 4×2 Matrices:

A = \(\begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \\ 7 & 8 \end{pmatrix}\), B = \(\begin{pmatrix} 9 & 10 \\ 11 & 12 \\ 13 & 14 \\ 15 & 16 \end{pmatrix}\)

Solution:

A + B = \(\begin{pmatrix} 1+9 & 2+10 \\ 3+11 & 4+12 \\ 5+13 & 6+14 \\ 7+15 & 8+16 \end{pmatrix}\)

Result = \(\begin{pmatrix} 10 & 12 \\ 14 & 16 \\ 18 & 20 \\ 22 & 24 \end{pmatrix}\)

Q4: Add the following 3×4 Matrices:

A = \(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{pmatrix}\), B = \(\begin{pmatrix} 13 & 14 & 15 & 16 \\ 17 & 18 & 19 & 20 \\ 21 & 22 & 23 & 24 \end{pmatrix}\)

Solution:

A + B = \(\begin{pmatrix} 1+13 & 2+14 & 3+15 & 4+16 \\ 5+17 & 6+18 & 7+19 & 8+20 \\ 9+21 & 10+22 & 11+23 & 12+24 \end{pmatrix}\)

Result = \(\begin{pmatrix} 14 & 16 & 18 & 20 \\ 22 & 24 & 26 & 28 \\ 30 & 32 & 34 & 36 \end{pmatrix}\)

 CEO @ T4Tutorials.com
I welcome to all of you if you want to discuss about any topic. Researchers, teachers and students are allowed to use the content for non commercial offline purpose. Further, You must use the reference of the website, if you want to use the partial content for research purpose.

Leave a Reply

Contents Copyrights Reserved By T4Tutorials