euler’s formula differential equations

By: Prof. Dr. Fazal Rehman | Last updated: December 14, 2024

[latex] \[ \textbf{Euler’s Formula for Differential Equations:} \] \[ y_{n+1} = y_n + h f(x_n, y_n) \] \[ \text{where:} \] \begin{aligned} &y_{n+1} \text{ is the next value of } y, \\ &y_n \text{ is the current value of } y, \\ &h \text{ is the step size, and} \\ &f(x_n, y_n) \text{ is the value of the derivative at } (x_n, y_n). \end{aligned} \[ \textbf{Example: Using Euler’s Formula for Differential Equations} \] \[ \text{Given the differential equation: } \frac{dy}{dx} = x + y, \quad y(0) = 1 \] \[ \text{Calculate } y \text{ at } x = 0.1 \text{ using Euler’s method with step size } h = 0.1. \] \[ \textbf{Step 1: Initialize values.} \] \[ x_0 = 0, \quad y_0 = 1, \quad h = 0.1 \] \[ \textbf{Step 2: Apply Euler’s formula.} \] \[ y_{n+1} = y_n + h f(x_n, y_n) \] \[ f(x_n, y_n) = x_n + y_n \] \[ \textbf{Step 3: Compute for the first step.} \] \[ f(x_0, y_0) = x_0 + y_0 = 0 + 1 = 1 \] \[ y_1 = y_0 + h f(x_0, y_0) = 1 + 0.1 \cdot 1 = 1.1 \] \[ \textbf{Result: } y(0.1) \approx 1.1 \] \[ \textbf{Summary: Using Euler’s method, the approximate solution at } x = 0.1 \text{ is } y \approx 1.1. \]
All Copyrights Reserved 2025 Reserved by T4Tutorials