Paper : <u>Methods of Applied Mathematics</u>

Examination:

Time Allowed: 3 hours

Q1. (a) Solve the following linear system by Gauss's elimination method.

y + z = -2, 6y + 6z = -12, x + y + z = 2.

(b) Solve the following linear system by Gauss-Jordan elimination method.

$$x+2y+3z=5$$
, $2x+5y+3z=3$, $4x+4z=17$.

Q2. (a) Solve the following linear system of equations by Carmmer's rule.

4x + 3y = 12, 2x + 5y = -8.

(**b**) Find invers of the matrix
$$A = \begin{bmatrix} -1 & 1 & 2 \\ 3 & -1 & 1 \\ -1 & 3 & 4 \end{bmatrix}$$

Q3. (a) Find the rank of matrix,
$$A = \begin{bmatrix} 0 & 4 & 1 \\ 2 & 6 & -2 \\ 4 & 8 & -5 \end{bmatrix}$$

(b) Find the Eigen values of the matrix
$$A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$$

Q4 (a) Show that the following matrices A and B are symmetric

	1	-3	4			5	6	7]	
A =	-3	2	-5	and	<i>B</i> =	6	-8	3	
	4	-5	0			7	3	1	

(b) For the vectors
$$a = (4, 0, 1)$$
 and $b = (2, -5, 1)$ find $2a - 2b$.

Q5. (a) Using dot product, find the angle between vectors u = (1, 2, 3) and v = (4, -5, 6). Do the vectors form

an acute angle, right angle, or obtuse angle?

(b) Calculate the cross product for the vectors a = (1, 1, 0) and b = (3, 0, 0).

Q6. (a) Find the real and imaginary part of complex number $\left(\sqrt{2}+i\right)^2$

(b) Find the Divergence of the vector function $v = \begin{bmatrix} 3xz, 2xy, -yz^2 \end{bmatrix}$

Q7. (a) Find the Curl of the vector field
$$v = \begin{bmatrix} yz \\ yz \\ zx, z \end{bmatrix}$$

(b) Find the general solution of differential equation
$$\frac{d^2y}{dx^2} + 5\frac{dy}{dx} - 6y = 0$$

Q8. (a) Find the Laplace transform of the following function:

$$f(t) = t^2 - 2t$$

(b) Given
$$F(S) = L(f(t))$$
, find $f(t)$

$$F(S) = \frac{2S + 16}{S^2 - 16}$$

Paper	: <u>Methods of Applied Mathematics</u>	Examination:			
Time Allowed	: <u>3 hours</u>				
	lgets are not allowed.				

Q1. (a) Solve the following linear system by Gauss's elimination method.

$$2x - 7y + 4z = 9$$
,
 $x + 9y - 6z = 1$,
 $-3x + 8y + 5z = 6$.

(b) Solve the following linear system by Gauss Jordan elimination method.

$$2x + 2y + 4z = 18,$$

 $x + 3y + 2z = 13,$
 $3x + y + 3z = 14.$

Q2. (a) Solve the following linear system of equations by Carmmer's rule.

x + 2z = 6
-3x +4 y + 6z = 30
-x - 2y + 3 z = 8.
(b) Find invers of the matrix
$$A = \begin{bmatrix} 0 & 4 & 1 \\ 2 & 6 & -2 \\ 4 & 8 & -5 \end{bmatrix}$$

Q3. (a) Find the rank of matrix
$$A = \begin{bmatrix} 1 & 0 & -1 \\ 3 & 2 & 4 \\ 6 & 4 & 8 \end{bmatrix}$$

(b) Find the Eigen values of the matrix $A = \begin{bmatrix} 4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}$

Paper : <u>Methods of Applied Mathematics</u>

Examination:

.

--

Time Allowed : <u>3 hours</u>

- **NOTE:** Attempt any five questions from the rest. All questions carry equal marks. Phones and other Electronic Gadgets are not allowed.
- **Q1.** Solve the following system of linear equations by

(a) Gaussian elimination method (b) Gauss - Jorden elimination method

x-3y+z=4, 2x-8y+8z=-2, -6x+3y-15z=9.

- Q2. (a) Use Cramer's Rule to solve the following system of linear equations
 - *x* +*y* = 5

$$2x + 3y = 8$$

(b) Find determinant of the matrix
$$A = \begin{bmatrix} 2 & 0 & 3 \\ -1 & 4 & -2 \\ 1 & -3 & 5 \end{bmatrix}$$
.

Q3. (a) Find the modulus and argument of the complex number z = 3 + 4i

(b) Find the Eigen values of the matrix
$$A = \begin{bmatrix} -4 & -6 \\ 3 & 5 \end{bmatrix}$$

Q4. (a) Let
$$A = \begin{bmatrix} -5 & 2 \\ -7 & -4 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 & 0 \\ 2 & 7 \end{bmatrix}$. Determine whether $AB = BA$

(b) Prove that the matrix $A = \begin{bmatrix} 0 & -5 & 4 \\ 5 & 0 & -1 \\ -4 & 1 & 0 \end{bmatrix}$ is skew symmetric.

Q5. (a) For the vectors u = (2, -1, 1), v = (-4, 0, 5) and w = (0, 3, -8). Find 3u + v - 4w.

(b) Calculate the dot product of vectors u = (1, 2, 3) and v = (4, -5, 6). Do the vectors form an acute angle, right angle, or obtuse angle?

Q6. (a) Determine whether the vectors $v_1 = (2, 2, 0)$, $v_2 = (1, -1, 1)$ and $v_3 = (4, 2, -2)$ are linear dependent or independent?

(b) Find the Gradient of the scalar function $f = x^4 + y^4$

Q7. (a) Find the Divergence of the vector function V = $[\sin xy, \sin xy, z \cos xy]$

(b) Find the Curl of the vector field V = $[y^n, z^n, x^n], (n \succ 0, \text{int } eger)$

Q8. (a) Find the Laplace transform of the following function:

$$f(t) = t^2 - 2t$$

(b) Given F(s) = L(f(t)), find $f(t) F(s) = \frac{4s - 3\pi}{s^2 + \pi^2}$

Q4. (a) Determine whether the vectors $v_1 = (2, 2, 0)$, $v_2 = (1, -1, 1)$ and $v_3 = (4, 2, -2)$ are linear dependent or independent?

(b) Let
$$u = (2, -1, 1)$$
, $v = (-4, 0, 5)$ and $w = (0, 3, -8)$. Find $u + v - 4w$.

- Q5. (a) Calculate the dot product of vectors u = (1, 2, 3) and v = (4, -5, 6). Do the vectors form an acute angle, right angle, or obtuse angle?.
 - (b) Calculate the cross product between a = (3, -3, 1) and b = (4, 9, 2).

Q6. (a) Find the Gradient of the scalar function $f = x^2 + y^2$ (b) Find the Divergence of the vector function $[x^3 + y^3, 3xy^2, 3zy^2]$

Q7. (a) Find the Curl of the vector field $\begin{bmatrix} y & 2x^2, 0 \end{bmatrix}$

(b) Find the general solution of differential equation
$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} - y = 0$$

Q8. (a) Find the Laplace transform of the following function:

$$f(t) = a + bt + ct^2$$

(b) Given
$$F(S) = L(f(t))$$
, find $f(t)$

$$F(S) = \frac{4S - 3\pi}{S^2 + \pi^2}$$