Differential Equations Past Papers 1

NOTE: Attempt any five questions. All questions carry equal marks. Phones and other Electronic Gadgets are Paper : Differential Equations Examination:
Time Allowed : 3 hours
Total Marks: 70, Passing Marks (35)

$$
\frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+5 y=0
$$

(b) Find the general solution of differential equation with variable coefficients

$$
\frac{d^{3} y}{d x^{3}}-\frac{d y}{d x}=e^{x}
$$

Q2: Determine whether $x=0$ is a regular singular point of the differential equation

$$
2 x^{2} y^{\prime \prime}+7 x(x+1) y^{\prime}-3 y=0
$$

Q3: Use the method of Frobenious method to find the one solution near $x=0$ of $x^{2} y^{\prime \prime}+x y^{\prime}+x^{2} y=0$
Q4: (a) Find the general solution in terms of j_{v} and Y_{-v} of $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-25\right) y=0$
(b) Find the general solution in terms of j_{v} and j_{-v} of $y^{\prime \prime}+\frac{1}{x} y^{\prime}+\left(1-\frac{n^{2}}{x^{2}}\right) y=0$

Q5: Find the Legendre polynomials $P_{2}(x), P_{3}(x), P_{4}(x), P_{5}(x)$ and $P_{6}(x)$ by the application of recurrence Formula $n P_{n}(x)=(2 n-1) x P_{n-1}(x)-(n-1) P_{n-2}(x)=0$ where $P_{\circ}(x)=1$ and $P_{1}(x)=x, n=2,3,4,5$
Q6: Find the Laguere polynomials $L_{2}(x), L_{3}(x), L_{4}(x), L_{5}(x)$ and $L_{6}(x)$ by the three-term recurrence Relation $L_{n}(x)=\frac{2 n-1-x}{n} L_{n-1}(x)-\frac{n-1}{n} L_{n-2}(x)$ where $L_{0}(x)=1$ and $L_{1}(x)=1-x, n=2,3,4,5,6$
Q7: Find the Chebyshev polynomials defined $T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x)$ for $n \geq 1$. If $T_{\circ}(x)=1, T_{1}(x)=x$, then show that $T_{2}(x)=2 x-1, T_{3}(x)=4 x^{3}-3 x$ and $T_{4}(x)=8 x^{4}-8 x^{2}+1, \mathrm{n}=1,2,3$

Q8: (a) Find the general solution of the system of differential equations $\frac{d x}{d t}=3 y$ and $\frac{d y}{d t}=2 x$
(b) Solve the Sturm-Lioville problem $Y^{\prime \prime}+\lambda Y=0$ with conditions $Y(0)+Y^{\prime}(0)=0, Y(\pi)+Y^{\prime}(\pi)=0$

Differential Equations Past Papers 2

Q1: (a) Find the general solution of differential equation with constant coefficients

$$
\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}-y=0
$$

(b) Find the general solution of differential equation with variable coefficient

$$
\frac{d^{3} y}{d x^{3}}-\frac{d y}{d x}=e^{x}
$$

Q2: Determine whether $x=0$ is a regular singular point of the differential equation

$$
2 x^{2} y^{\prime \prime}+7 x(x+1) y^{\prime}-3 y=0
$$

Q3:
Use the method of Frobenious method to find the one solution near $x=0$ of $2 x y^{\prime \prime}+(x+1) y^{\prime}+3 y=0$
Q4: (a) Find the general solution in terms of j_{v} and Y_{-v} of $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\frac{1}{16}\right) y=0$
(b) Find the general solution in terms of j_{ν} and $j_{-\nu}$ of $x^{2} y^{\prime \prime}+x y^{\prime}+\left(9 x^{2}-\frac{1}{9}\right) y=0$

Q5: Find the Hermite polynomials $H_{2}(x), H_{3}(x), H_{4}(x), H_{5}(x)$ and $H_{6}(x)$ by the three-term recurrence Relation $H_{n+1}(x)=2 x H_{n}(x)+2 H_{n-1}(x)$ where $H_{\circ}(x)=1$ and $H_{1}(x)=1-x, n=1,2,3,4,5$

Q6: Find the Laguere polynomials $L_{2}(x), L_{3}(x), L_{4}(x), L_{5}(x)$ and $L_{6}(x)$ by the three-term recurrence Relation $L_{n}(x)=\frac{2 n-1-x}{n} L_{n-1}(x)-\frac{n-1}{n} L_{n-2}(x)$ where $L_{\circ}(x)=1$ and $L_{1}(x)=1-x, n=2,3,4,5,6$

Q7: (a) Find the general solution of the system of differential equations $\frac{d x}{d t}=3 y$ and $\frac{d y}{d t}=2 x$
(b) Solve the Sturm-Lioville problem $Y^{\prime \prime}+\lambda Y=0$ with conditions $Y(0)+Y^{\prime}(0)=0, Y(\pi)+Y^{\prime}(\pi)=0$

Q8: Find the Chebyshev polynomials of first and second kind defined by $T_{n}(x)=\cos \left(n \cos ^{-1} x\right)$ and $U_{n}(x)=\frac{\sin \left[(n+1) \cos ^{-1} x\right]}{\sqrt{1-x^{2}}}$. Show that $T_{0}(x)=1, T_{1}(x)=x$ and $T_{2}(x)=2 x^{2}-1$
$U_{\circ}(x)=1, U_{1}(x)=2 x$ and $U_{2}(x)=4 x^{2}-1, \quad n=0,1,2$

Differential Equations Past Papers 3

Q1. (a) Find the general solution of differential equation with constant coefficients

$$
\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}-y=0
$$

(b) Find the general solution of differential equation with variable coefficients

$$
\frac{d^{2} y}{d x^{2}}-5 \frac{d y}{d x}+6 y=e^{3 x}
$$

Q2. Find the series solution near $x=0$ of the differential equation

$$
2 x^{2} y^{\prime \prime}+7 x(x+1) y^{\prime}-3 y=0
$$

Q3. Use the method of Frobenious method to find the one solution near $x=0$ of

$$
9 x^{2} y^{\prime \prime}+3 x^{2} y^{\prime}+2 y=0
$$

Q4. (a) Find the general solution in terms of j_{v} and Y_{-v} if $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-25\right) y=0$
(b) Find the general solution in terms of j_{ν} and j_{-v} if $y^{\prime \prime}+\frac{1}{x} y^{\prime}+\left(1-\frac{n^{2}}{x^{2}}\right) y=0$

Q5. Find the Lengendre polynomials $P_{2}(x), P_{3}(x), P_{4}(x), P_{5}(x)$ and $P_{6}(x)$ by the application of recurrence formula $n P_{n}(x)=(2 n-1) x P_{n-1}(x)-(n-1) 2 P_{n-2}(x)$ where $P_{\circ}(x)=1$ and $P_{1}(x)=x$ For $n=, 2,3,4,5$.
Q6. Find the Hermit polynomials $H_{2}(x), H_{3}(x), H_{4}(x), H_{5}(x)$ and $H_{6}(x)$ by the threeterm recurrence relation $H_{n+1}(x)=2 x H_{n}(x)+2 H_{n-1}(x)$ where $H_{\circ}(x)=1$ and $H_{1}(x)=1-x$ For $n=1,2,3,4,5$.
Q7. (a) Find the general solution of the system of differential equations

$$
\frac{d x}{d t}=3 y-2 x \text { and } \frac{d y}{d t}=2 x-y
$$

(b) Solve the Sturm-Lioville problem $Y^{\prime \prime}+\lambda Y=0$ with the conditions $Y(0)+Y^{\prime}(0)=0, Y(\pi)+Y^{\prime}(\pi)=0$
Q8. Find the Chebyshev polynomials of first and second kind defined by $T_{n}(x)=\cos \left(n \cos ^{-1} x\right)$ and $U_{n}(x)=\frac{\sin \left[(n+1) \cos ^{-1} x\right]}{\sqrt{1-x^{2}}}$. Show that $T_{\circ}(x)=1, T_{1}(x)=x, T_{2}(x)=2 x-1$ and $U_{\circ}(x)=1, U_{1}(x)=2 x, U_{2}(x)=2 x^{2}-1$ for $n=0,1,2$.

