NOTE: Attempt any five questions. All questions carry equal marks. Phones and other Electronic Gadgets are

 Paper
 : Differential Equations

 Examination:

Time Allowed : <u>3 hours</u>

Total Marks: 70, Passing Marks (35)

$$\frac{d^2 y}{dx^2} + 4\frac{dy}{dx} + 5y = 0$$

(b) Find the general solution of differential equation with variable coefficients

$$\frac{d^3 y}{dx^3} - \frac{dy}{dx} = e$$

Q2: Determine whether x = 0 is a regular singular point of the differential equation

$$2x^2 y'' + 7x(x+1)y' - 3y = 0$$

Q3: Use the method of Frobenious method to find the one solution near x = 0 of $x^2 y'' + xy' + x^2 y = 0$

Q4: (a) Find the general solution in terms of j_v and Y_{-v} of $x^2 y'' + xy' + (x^2 - 25)y = 0$ (b) Find the general solution in terms of j_v and j_{-v} of $y'' + \frac{1}{x}y' + \left(1 - \frac{n^2}{x^2}\right)y = 0$

Q5: Find the Legendre polynomials $P_2(x)$, $P_3(x)$, $P_4(x)$, $P_5(x)$ and $P_6(x)$ by the application of recurrence Formula $nP_n(x) = (2n-1)xP_{n-1}(x) - (n-1)P_{n-2}(x) = 0$ where $P_{\circ}(x) = 1$ and $P_1(x) = x$, n = 2,3,4,5

Q6: Find the Laguere polynomials $L_2(x)$, $L_3(x)$, $L_4(x)$, $L_5(x)$ and $L_6(x)$ by the three-term recurrence

Relation $L_n(x) = \frac{2n-1-x}{n} L_{n-1}(x) - \frac{n-1}{n} L_{n-2}(x)$ where $L_n(x) = 1$ and $L_1(x) = 1-x$, n = 2,3,4,5,6Q7: Find the Chebyshev polynomials defined $T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$ for $n \ge 1$. If

$$T_{\circ}(x) = 1, T_{1}(x) = x$$
, then show that $T_{2}(x) = 2x - 1, T_{3}(x) = 4x^{3} - 3x$ and $T_{4}(x) = 8x^{4} - 8x^{2} + 1, n = 1, 2, 3$

- Q8: (a) Find the general solution of the system of differential equations $\frac{dx}{dt} = 3y$ and $\frac{dy}{dt} = 2x$
 - (b) Solve the Sturm-Lioville problem $Y'' + \lambda Y = 0$ with conditions Y(0) + Y'(0) = 0, $Y(\pi) + Y'(\pi) = 0$

Differential Equations Past Papers 2

Q1: (a) Find the general solution of differential equation with constant coefficients

$$\frac{d^2 y}{dx^2} - 2\frac{dy}{dx} - y = 0$$

(b) Find the general solution of differential equation with variable coefficient

$$\frac{d^3 y}{dx^3} - \frac{dy}{dx} = e^x$$

Q2: Determine whether x = 0 is a regular singular point of the differential equation

$$2x^2 y'' + 7x(x+1)y' - 3y = 0$$

- Q3: Use the method of Frobenious method to find the one solution near x = 0 of 2x y'' + (x+1)y' + 3y = 0
- Q4: (a) Find the general solution in terms of j_{ν} and $Y_{-\nu}$ of $x^2 y'' + xy' + \left(x^2 \frac{1}{16}\right)y = 0$ (b) Find the general solution in terms of j_{ν} and $j_{-\nu}$ of $x^2 y'' + xy' + \left(9x^2 - \frac{1}{9}\right)y = 0$
- Q5: Find the Hermite polynomials $H_2(x)$, $H_3(x)$, $H_4(x)$, $H_5(x)$ and $H_6(x)$ by the three-term recurrence Relation $H_{n+1}(x) = 2x H_n(x) + 2 H_{n-1}(x)$ where $H_0(x) = 1$ and $H_1(x) = 1 - x$, n = 1, 2, 3, 4, 5

Q6: Find the Laguere polynomials $L_2(x)$, $L_3(x)$, $L_4(x)$, $L_5(x)$ and $L_6(x)$ by the three-term recurrence Relation $L_n(x) = \frac{2n-1-x}{n} L_{n-1}(x) - \frac{n-1}{n} L_{n-2}(x)$ where $L_0(x) = 1$ and $L_1(x) = 1-x$, n = 2,3,4,5,6

Q7: (a) Find the general solution of the system of differential equations $\frac{dx}{dt} = 3y$ and $\frac{dy}{dt} = 2x$ (b) Solve the Sturm-Lioville problem $Y'' + \lambda Y = 0$ with conditions Y(0) + Y'(0) = 0, $Y(\pi) + Y'(\pi) = 0$

Q8: Find the Chebyshev polynomials of first and second kind defined by $T_n(x) = \cos(n\cos^{-1}x)$ and $U_n(x) = \frac{\sin[(n+1)\cos^{-1}x]}{\sqrt{1-x^2}}$. Show that $T_n(x) = 1$, $T_1(x) = x$ and $T_2(x) = 2x^2 - 1$

$$U_{\circ}(x) = 1$$
, $U_{1}(x) = 2x$ and $U_{2}(x) = 4x^{2} - 1$, $n = 0, 1, 2$

Differential Equations Past Papers 3

Q1. (a) Find the general solution of differential equation with constant coefficients

$$\frac{d^2 y}{dx^2} - 2\frac{dy}{dx} - y = 0$$

(b) Find the general solution of differential equation with variable coefficients

$$\frac{d^2 y}{dx^2} - 5\frac{dy}{dx} + 6y = e^{3x}$$

Q2. Find the series solution near x = 0 of the differential equation

$$2x^2y'' + 7x(x+1)y' - 3y = 0$$

Q3. Use the method of Frobenious method to find the one solution near x = 0 of $9x^2 y'' + 3x^2 y' + 2y = 0$

Q4. (a) Find the general solution in terms of
$$j_v$$
 and Y_{-v} if $x^2y'' + xy' + (x^2 - 25)y = 0$

(b) Find the general solution in terms of j_{ν} and $j_{-\nu}$ if $y'' + \frac{1}{x}y' + \left(1 - \frac{n^2}{x^2}\right)y = 0$

- Q5. Find the Lengendre polynomials $P_2(x)$, $P_3(x)$, $P_4(x)$, $P_5(x)$ and $P_6(x)$ by the application of recurrence formula $nP_n(x) = (2n-1)xP_{n-1}(x) (n-1)2P_{n-2}(x)$ where $P_0(x) = 1$ and $P_1(x) = x$ For n = 2,3,4,5.
- Q6. Find the Hermit polynomials $H_2(x)$, $H_3(x)$, $H_4(x)$, $H_5(x)$ and $H_6(x)$ by the threeterm recurrence relation $H_{n+1}(x) = 2xH_n(x) + 2H_{n-1}(x)$ where $H_0(x) = 1$ and $H_1(x) = 1 - x$ For n = 1, 2, 3, 4, 5.
- Q7. (a) Find the general solution of the system of differential equations

$$\frac{dx}{dt} = 3y - 2x \text{ and } \frac{dy}{dt} = 2x - y$$

(b) Solve the Sturm-Lioville problem $Y'' + \lambda Y = 0$ with the conditions Y(0) + Y'(0) = 0, $Y(\pi) + Y'(\pi) = 0$

Q8. Find the Chebyshev polynomials of first and second kind defined by $T_n(x) = \cos(n\cos^{-1}x)$ and $U_n(x) = \frac{\sin[(n+1)\cos^{-1}x]}{\sqrt{1-x^2}}$. Show that $T_o(x) = 1, T_1(x) = x, T_2(x) = 2x - 1$ and $U_o(x) = 1, U_1(x) = 2x, U_2(x) = 2x^2 - 1$ for n = 0, 1, 2.