Q1. (a) Find $\lim _{x \rightarrow-3} \frac{x+3}{x^{2}+4 x+3}$
(b) At what point(s) the function $\mathrm{y}=\frac{x+1}{x^{2}-4 x+3}$ is continuous?

Q2. (a) Using the product rule find $\frac{d y}{d x}$ if $y=\left(x+\frac{1}{x}\right)\left(x-\frac{1}{x}+1\right)$
(b) Using the product rule find $\frac{d y}{d x}$ if $y=\frac{\sqrt{x}-1}{\sqrt{x}+1}$

Q3. (a) Using derivative as a slope find line that are tangent and normal to the following curve at the given point. $x^{2}+y^{2}=25, \quad(3,-4)$
(b) Find the linearization $\mathrm{L}(\mathrm{x})$ of the $\mathrm{f}(\mathrm{x})$ at $\mathrm{x}=\mathrm{a}$, where $\mathrm{f}(\mathrm{x})=x^{3}-2 x+3, a=2$

Q4. (a)Find the Taylor series generated by the following function at $\mathrm{x}=\mathrm{a}$

$$
\mathrm{f}(\mathrm{x})=x^{4}+x^{2}+1, a=-2
$$

(b)Find the Maclaurin series for function $\mathrm{f}(\mathrm{x})=\frac{1}{1+x}$

Q5. (a) Evaluate the integral $\int\left(2 x^{2}-5 x+\frac{1}{2 x}\right) d x$ (ii) $\int\left(1-\frac{1}{x^{\frac{5}{4}}}\right) d x$
(b)Evaluate the integral (i) $\int_{1}^{4}\left(\frac{x}{8}+\frac{1}{2 x}\right) d x$ (ii) $\int_{0}^{5} x^{\frac{5}{2}} d x$

Q6. (a)Evaluate the following integral by using the given substitution

$$
\int 12\left(y^{4}+4 y^{2}+1\right)^{2}\left(y^{3}+2 y\right) d y, \text { substitute } u=y^{4}+4 y^{2}+1 .
$$

(b)Evaluate the integral $\int x \cos x d x$ using by parts formula

Q7. (a) Evaluate the integral $\int \frac{1}{x(x+2)} d x$ using partial fraction
(b) Find the area of the region between the x -axis and the graph of $\mathrm{f}(\mathrm{x})=-x^{2}-2 x$, where $-2 \leq x \leq 2$

Q8. (a) Evaluate the integral $\int_{0}^{\pi} \cos d x$
(b) Find the absolute maximum and minimum values of $f(x)=x^{2}-1$ on $[-1,2]$.

