Site icon T4Tutorials.com

State Transition Matrix — MCQs – EE

1. The state transition matrix is denoted by:

(A) Φ(t)


(B) A(t)


(C) C(t)


(D) D(t)



2. The state transition matrix describes:

(A) The relationship between input and output


(B) The evolution of the state vector over time


(C) The steady-state behavior of the system


(D) The transfer function



3. The state transition matrix Φ(t) satisfies the condition:

(A) Φ(0) = 0


(B) Φ(0) = I


(C) Φ(0) = A


(D) Φ(0) = B



4. The state transition matrix is used to find:

(A) The transfer function


(B) The output response


(C) The state vector at any time t


(D) The system gain



5. The state transition matrix Φ(t) is a function of:

(A) The input only


(B) The output only


(C) The system matrix A


(D) The control matrix B



6. The state equation of a linear time-invariant system is given by

(A) The transfer function


(B) The state transition matrix


(C) The Nyquist plot


(D) The Bode plot



7. The state transition matrix Φ(t) represents:

(A) The input effect


(B) The system’s natural response


(C) The external disturbance


(D) The steady-state error



8. For a time-invariant system, the state transition matrix depends only on:

(A) Initial conditions


(B) Time difference (t – t₀)


(C) System input


(D) System output



9. The state transition matrix is used in the solution:

(A) y(t) = Φ(t) y(0) + ∫Φ(t−τ)u(τ)dτ


(B) x(t) = Φ(t)x(0) + ∫Φ(t−τ)Bu(τ)dτ


(C) x(t) = Ax + Bu


(D) y(t) = Cx + Du



10. The derivative of the state transition matrix satisfies:

(A) dΦ/dt = AΦ(t)


(B) dΦ/dt = Φ(t)A


(C) dΦ/dt = BΦ(t)


(D) dΦ/dt = Φ(t)B



11. The state transition matrix Φ(t) is also called the:

(A) System response matrix


(B) Fundamental matrix solution


(C) Transfer function


(D) Controllability matrix



12. The state transition matrix provides information about:

(A) How inputs affect the system


(B) How the system evolves without input


(C) Only steady-state response


(D) Only damping ratio



13. The inverse of the state transition matrix satisfies:

(A) Φ⁻¹(t) = Φ(t)


(B) Φ⁻¹(t) = Φ(−t)


(C) Φ⁻¹(t) = AΦ(t)


(D) Φ⁻¹(t) = Φ(t)A



14. For a time-invariant system, Φ(t) can be expressed as:

(A) Laplace transform of A


(B) Inverse Laplace of transfer function


(C) Matrix exponential of A


(D) Product of A and B



15. The state transition matrix is n × n if the system has:

(A) n inputs


(B) n outputs


(C) n states


(D) n poles



16. The state transition matrix helps to determine:

(A) Stability and transient response


(B) Phase margin


(C) Frequency response


(D) Root locus shape



17. The state transition matrix is always:

(A) Symmetric


(B) Orthogonal


(C) Non-singular


(D) Diagonal



18. The state transition matrix for t = 0 is:

(A) A


(B) B


(C) I


(D) 0



19. The superposition property holds for:

(A) Linear time-invariant systems only


(B) Nonlinear systems


(C) Random systems


(D) All systems



20. The stability of the system can be determined from:

(A) The determinant of Φ(t)


(B) The eigenvalues of A


(C) The rank of Φ(t)


(D) The trace of B



21. The state transition matrix relates:

(A) Input and output


(B) Initial state and future state


(C) System parameters and poles


(D) Input gain and damping



22. The state transition matrix Φ(t₁, t₂) satisfies:

(A) Φ(t₁, t₂) = Φ(t₂ − t₁)


(B) Φ(t₁, t₂) = Φ(t₂)Φ(t₁)


(C) Φ(t₁, t₂) = Φ(t₁) − Φ(t₂)


(D) Φ(t₁, t₂) = A(t₂ − t₁)



23. The homogeneous solution of a state equation involves:

(A) Only Φ(t)


(B) Only u(t)


(C) Both Φ(t) and u(t)


(D) Only A and B



24. The transition property of Φ(t) is:

(A) Φ(t₁ + t₂) = Φ(t₁)Φ(t₂)


(B) Φ(t₁ + t₂) = Φ(t₁) + Φ(t₂)


(C) Φ(t₁ + t₂) = Φ(t₂) − Φ(t₁)


(D) Φ(t₁ + t₂) = AΦ(t₁)Φ(t₂)



25. The state transition matrix Φ(t) can be obtained using:

(A) Laplace transform


(B) Fourier transform


(C) Nyquist method


(D) Root locus



26. The Laplace transform of the state transition matrix is:

(A) (sI + A)⁻¹


(B) (sI − A)⁻¹


(C) (A − sI)⁻¹


(D) (sA − I)⁻¹



27. The state transition matrix is also known as the:

(A) Propagation matrix


(B) Feedback matrix


(C) Control matrix


(D) Output matrix



28. The determinant of Φ(t) is always:

(A) Zero


(B) Nonzero


(C) Negative


(D) Positive



29. The state transition matrix for a stable system tends to:

(A) Zero as t → ∞


(B) Infinity as t → ∞


(C) A constant value


(D) Oscillate indefinitely



30. The state transition matrix helps in computing:

(A) Input signal


(B) State response for any input


(C) Frequency response


(D) Gain margin



Exit mobile version