Write a Program in Python to solve quadratic equations.
The formula of Quadratic equation
ax2+bx+c=0
# import complex math module
import cmath
FistNumber = float(input('Enter FistNumber: '))
SecondNumber = float(input('Enter SecondNumber: '))
ThirdNumber = float(input('Enter ThirdNumber: '))
# calculate the discriminant
ThirdNumber = (SecondNumber**2) - (4*FistNumber*ThirdNumber)
# find two solutions
T4tutorials_Result1 = (-SecondNumber-cmath.sqrt(ThirdNumber))/(2*FistNumber)
T4tutorials_Result2 = (-SecondNumber+cmath.sqrt(ThirdNumber))/(2*FistNumber)
print('The solution are {0} and {1}'.format(T4tutorials_Result1,T4tutorials_Result2))
Output
Enter FistNumber: 9
Enter SecondNumber: 3
Enter ThirdNumber: 4
The solution are (-0.16666666666666666-0.6454972243679028j) and (-0.16666666666666666+0.6454972243679028j)
Second Way: The direct formula of Quadratic equation
# Python program to find roots of quadratic equation
import math
# function for finding roots
def T4tutorials(FirstNumber, SecondNumber, ThirdNumber):
dis_form = SecondNumber * SecondNumber - 4 * FirstNumber * ThirdNumber
SquareRootValue = math.sqrt(abs(dis_form))
if dis_form > 0:
print(" real and different roots ")
print((-SecondNumber + SquareRootValue) / (2 * FirstNumber))
print((-SecondNumber - SquareRootValue) / (2 * FirstNumber))
elif dis_form == 0:
print(" real and same roots")
print(-SecondNumber / (2 * FirstNumber))
else:
print("Complex Roots")
print(- SecondNumber / (2 * FirstNumber), " + i", SquareRootValue)
print(- SecondNumber / (2 * FirstNumber), " - i", SquareRootValue)
FirstNumber = int(input('Enter FirstNumber:'))
SecondNumber = int(input('Enter SecondNumber:'))
ThirdNumber = int(input('Enter ThirdNumber:'))
# If FirstNumber is 0, then incorrect equation
if FirstNumber == 0:
print("Input correct quadratic equation")
else:
T4tutorials(FirstNumber, SecondNumber, ThirdNumber)
Output
Enter FirstNumber:22
Enter SecondNumber:44
Enter ThirdNumber:77
Complex Roots
-1.0 + i 69.57010852370435
-1.0 – i 69.57010852370435