Site icon T4Tutorials.com

Quadratic equation in Python

Write a Program in Python to solve quadratic equations.

The formula of Quadratic equation

ax2+bx+c=0

 

# import complex math module  
import cmath  
FistNumber = float(input('Enter FistNumber: '))  
SecondNumber = float(input('Enter SecondNumber: '))  
ThirdNumber = float(input('Enter ThirdNumber: '))  
  
# calculate the discriminant  
ThirdNumber = (SecondNumber**2)  - (4*FistNumber*ThirdNumber) 
  
# find two solutions  
T4tutorials_Result1 = (-SecondNumber-cmath.sqrt(ThirdNumber))/(2*FistNumber)  
T4tutorials_Result2 = (-SecondNumber+cmath.sqrt(ThirdNumber))/(2*FistNumber)  
print('The solution are {0} and {1}'.format(T4tutorials_Result1,T4tutorials_Result2))

Output

Enter FistNumber: 9
Enter SecondNumber: 3
Enter ThirdNumber: 4
The solution are (-0.16666666666666666-0.6454972243679028j) and (-0.16666666666666666+0.6454972243679028j)

Second Way: The direct formula of Quadratic equation

# Python program to find roots of quadratic equation  
import math  
  
  
# function for finding roots  
def T4tutorials(FirstNumber, SecondNumber, ThirdNumber):  
  
    dis_form = SecondNumber * SecondNumber - 4 * FirstNumber * ThirdNumber  
    SquareRootValue = math.sqrt(abs(dis_form))  
  
  
    if dis_form > 0:  
        print(" real and different roots ")  
        print((-SecondNumber + SquareRootValue) / (2 * FirstNumber))  
        print((-SecondNumber - SquareRootValue) / (2 * FirstNumber))  
  
    elif dis_form == 0:  
        print(" real and same roots")  
        print(-SecondNumber / (2 * FirstNumber))  
  
  
    else:  
        print("Complex Roots")  
        print(- SecondNumber / (2 * FirstNumber), " + i", SquareRootValue)  
        print(- SecondNumber / (2 * FirstNumber), " - i", SquareRootValue)  
  
  
FirstNumber = int(input('Enter FirstNumber:'))  
SecondNumber = int(input('Enter SecondNumber:'))  
ThirdNumber = int(input('Enter ThirdNumber:'))  
  
# If FirstNumber is 0, then incorrect equation  
if FirstNumber == 0:  
    print("Input correct quadratic equation")  
  
else:  
    T4tutorials(FirstNumber, SecondNumber, ThirdNumber)

Output

Enter FirstNumber:22
Enter SecondNumber:44
Enter ThirdNumber:77
Complex Roots
-1.0 + i 69.57010852370435
-1.0 – i 69.57010852370435

 

Exit mobile version