1. Biomechanics is the study of:
(A) Forces and their effects on living organisms
(B) Chemical reactions in the body
(C) Electrical activity of the heart
(D) Digestive processes
2. Kinematics studies:
(A) Motion without regard to forces
(B) Force production only
(C) Muscle metabolism
(D) Ligament length
3. Kinetics studies:
(A) Forces causing motion
(B) Joint angles only
(C) Muscle endurance only
(D) Ligament stability
4. Displacement refers to:
(A) Change in position
(B) Speed
(C) Mass
(D) Force
5. Velocity is:
(A) Rate of change of displacement
(B) Total distance traveled
(C) Muscle strength
(D) Torque
6. Acceleration is:
(A) Change in velocity over time
(B) Constant speed
(C) Force per unit area
(D) Mass times velocity
7. Force is measured in:
(A) Newtons
(B) Joules
(C) Watts
(D) Meters
8. Torque is defined as:
(A) Rotational force about an axis
(B) Linear displacement
(C) Muscle contraction only
(D) Bone density
9. Moment arm is:
(A) Perpendicular distance from axis of rotation to line of force
(B) Length of a bone
(C) Distance a muscle shortens
(D) Joint angle
10. Mechanical advantage is:
(A) Ratio of output force to input force
(B) Ratio of bone length to ligament length
(C) Muscle contraction velocity
(D) Joint angle
11. First-class lever example in the body:
(A) Neck extension
(B) Elbow flexion
(C) Calf raise
(D) Knee extension
12. Second-class lever example in the body:
(A) Heel raise (plantarflexion)
(B) Biceps curl
(C) Shoulder abduction
(D) Elbow extension
13. Third-class lever example in the body:
(A) Biceps curl
(B) Heel raise
(C) Neck flexion
(D) Jaw closure
14. Newton’s first law states:
(A) Object remains at rest or in uniform motion unless acted upon by a force
(B) Force equals mass times acceleration
(C) Action equals reaction
(D) Work equals force times distance
15. Newton’s second law:
(A) F = ma
(B) F = mv
(C) T = r × F
(D) W = F × d
16. Newton’s third law:
(A) Every action has an equal and opposite reaction
(B) F = ma
(C) Torque equals force times moment arm
(D) Work equals force times distance
17. Center of mass is:
(A) Average location of body mass
(B) Point of joint rotation
(C) Muscle attachment site
(D) Ligament origin
18. Ground reaction force is:
(A) Force exerted by the ground on the body
(B) Muscle contraction only
(C) Joint torque
(D) Bone reaction
19. Work is defined as:
(A) Force applied over a distance
(B) Force per unit area
(C) Mass times acceleration
(D) Torque times angular displacement
20. Power is:
(A) Work done per unit time
(B) Torque only
(C) Force times moment arm only
(D) Mass times velocity
21. Momentum is:
(A) Mass times velocity
(B) Mass times acceleration
(C) Torque times time
(D) Force per unit area
22. Impulse is:
(A) Force multiplied by time
(B) Mass times velocity
(C) Torque times displacement
(D) Work divided by distance
23. Stress on a tissue is:
(A) Force per unit area
(B) Torque applied
(C) Muscle contraction
(D) Joint rotation
24. Strain represents:
(A) Deformation relative to original length
(B) Force applied only
(C) Joint angle only
(D) Torque only
25. Inertia is:
(A) Resistance to change in motion
(B) Force applied
(C) Acceleration
(D) Torque
26. Linear momentum depends on:
(A) Mass and velocity
(B) Muscle strength only
(C) Torque only
(D) Ligament stiffness
27. Angular momentum depends on:
(A) Moment of inertia and angular velocity
(B) Linear velocity only
(C) Force applied only
(D) Muscle length only
28. Mechanical work efficiency is:
(A) Ratio of mechanical work output to energy input
(B) Force per unit area
(C) Torque per second
(D) Mass times acceleration
29. Biomechanical analysis helps in:
(A) Injury prevention and performance optimization
(B) Digestion only
(C) Circulation only
(D) Respiration only
30. Center of pressure represents:
(A) Point of application of ground reaction force
(B) Center of mass
(C) Muscle origin
(D) Torque
31. Force plate analysis measures:
(A) Ground reaction forces
(B) Muscle length
(C) Joint angles only
(D) Ligament stress only
32. EMG measures:
(A) Muscle activation and timing
(B) Torque only
(C) Bone density
(D) Ligament laxity
33. Range of motion analysis is part of:
(A) Kinematics
(B) Kinetics only
(C) Muscle strength only
(D) Balance testing only
34. Open kinetic chain exercises involve:
(A) Distal segment free
(B) Distal segment fixed
(C) Both arms fixed
(D) Whole body stationary
35. Closed kinetic chain exercises involve:
(A) Distal segment fixed
(B) Distal segment free
(C) Isolated joint movement only
(D) No movement
36. Angular velocity is:
(A) Rate of change of joint angle
(B) Linear displacement
(C) Torque only
(D) Mass times acceleration
37. Moment of inertia depends on:
(A) Mass and distribution around axis of rotation
(B) Bone length only
(C) Ligament strength only
(D) Muscle fiber type only
38. Joint reaction force analysis helps:
(A) Determine load transmitted across joint
(B) Measure heart rate
(C) Measure oxygen consumption
(D) Determine ligament elasticity
39. Lever systems in the body include:
(A) Bones, joints, and muscles
(B) Only muscles
(C) Only ligaments
(D) Only tendons
40. Biomechanical efficiency improves:
(A) Performance and reduces injury risk
(B) Only bone density
(C) Ligament length
(D) Tendon elasticity
41. Center of mass shifts during walking:
(A) Forward and upward cyclically
(B) Sideways only
(C) Remains static
(D) Rotates only
42. Stretch-shortening cycle involves:
(A) Eccentric followed by concentric muscle action
(B) Concentric only
(C) Isometric only
(D) Eccentric only
43. Peak torque of a joint is measured during:
(A) Isokinetic testing
(B) Walking only
(C) Stretching only
(D) Postural control only
44. Biomechanics aids in:
(A) Prosthetic design and orthotics
(B) Blood pressure measurement
(C) Lung function testing
(D) Nutritional analysis
45. Angular acceleration is:
(A) Rate of change of angular velocity
(B) Joint torque
(C) Muscle length
(D) Bone density
46. Friction in joints affects:
(A) Smoothness and efficiency of movement
(B) Bone density only
(C) Muscle hypertrophy
(D) Ligament elasticity
47. Viscoelastic tissues show:
(A) Both time- and rate-dependent mechanical behavior
(B) Only elastic behavior
(C) Only viscous behavior
(D) No mechanical behavior
48. Biomechanical modeling helps in:
(A) Predicting movement and joint loading
(B) Measuring blood sugar
(C) Lung capacity testing
(D) Muscle biopsy
49. Work-energy principle in biomechanics states:
(A) Work done equals change in mechanical energy
(B) Torque equals force
(C) Velocity equals acceleration
(D) Force equals mass times acceleration
50. Understanding biomechanics is essential for:
(A) Physiotherapy, sports science, and rehabilitation
(B) Digestion only
(C) Respiratory therapy only
(D) Pharmacology only