Heat equation with neumann boundary conditions

By: Prof. Dr. Fazal Rehman | Last updated: December 1, 2024

[latex] \[ \textbf{Heat Equation with Neumann Boundary Conditions} \] \[ \text{The heat equation is given as:} \] \[ \frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2}, \quad x \in [0, L], \, t > 0 \] \[ \text{Neumann Boundary Conditions:} \] \[ \frac{\partial u}{\partial x}\bigg|_{x=0} = 0, \quad \frac{\partial u}{\partial x}\bigg|_{x=L} = 0 \] \[ \text{Initial Condition:} \] \[ u(x, 0) = f(x), \quad 0 \leq x \leq L \] \[ \text{Solution Process:} \] \[ \text{1. Assume a separable solution: } u(x, t) = X(x)T(t) \] \[ \text{2. Substitute into the heat equation:} \] \[ X(x) \frac{dT}{dt} = \alpha T(t) \frac{d^2X}{dx^2} \] \[ \text{3. Separate variables:} \] \[ \frac{1}{T(t)} \frac{dT}{dt} = \alpha \frac{1}{X(x)} \frac{d^2X}{dx^2} = -\lambda \] \[ \text{4. Solve the spatial equation:} \] \[ \frac{d^2X}{dx^2} + \frac{\lambda}{\alpha} X = 0 \] \[ \text{5. Apply Neumann Boundary Conditions to find eigenvalues and eigenfunctions.} \] \[ \text{6. Solve the temporal equation:} \] \[ \frac{dT}{dt} + \lambda T = 0 \quad \text{which leads to } T(t) = C e^{-\lambda t} \] \[ \text{7. Combine the solutions:} \] \[ u(x, t) = \sum_{n=0}^\infty C_n X_n(x) e^{-\lambda_n t} \] \[ \text{The coefficients } C_n \text{ are determined using the initial condition.} \]
All Copyrights Reserved 2025 Reserved by T4Tutorials